电子科技大学学报
電子科技大學學報
전자과기대학학보
JOURNAL OF UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA
2014年
2期
257-261
,共5页
窗融合%线性各向异性扩散%非极大值抑制%目标检测
窗融閤%線性各嚮異性擴散%非極大值抑製%目標檢測
창융합%선성각향이성확산%비겁대치억제%목표검측
detection fusion%linear anisotropic diffusion%non maximum suppression (NMS)%object detection
窗融合是滑动窗目标检测方法中的一个重要步骤。针对传统方法的缺陷,提出了一种新的窗融合方法。该方法把每个初始窗口当作系统中的一个位置,两个窗口的检测分数和重叠面积用来计算对应位置之间的热传导系数,最终利用线性各向异性热扩散条件下系统温度之和最大化问题来模拟窗融合工作。采用贪婪算法获得目标函数的近似最优解,相应的热源即为窗融合结果。在VOC2009目标数据库和INRIA行人数据库上的实验显示,该方法不仅能够删除重复检测,还可以排除误检以及防止相邻目标干扰。相比传统的非极大值抑制方法,该方法在不损失召回率的前提下显著地提升了目标的检测精度。
窗融閤是滑動窗目標檢測方法中的一箇重要步驟。針對傳統方法的缺陷,提齣瞭一種新的窗融閤方法。該方法把每箇初始窗口噹作繫統中的一箇位置,兩箇窗口的檢測分數和重疊麵積用來計算對應位置之間的熱傳導繫數,最終利用線性各嚮異性熱擴散條件下繫統溫度之和最大化問題來模擬窗融閤工作。採用貪婪算法穫得目標函數的近似最優解,相應的熱源即為窗融閤結果。在VOC2009目標數據庫和INRIA行人數據庫上的實驗顯示,該方法不僅能夠刪除重複檢測,還可以排除誤檢以及防止相鄰目標榦擾。相比傳統的非極大值抑製方法,該方法在不損失召迴率的前提下顯著地提升瞭目標的檢測精度。
창융합시활동창목표검측방법중적일개중요보취。침대전통방법적결함,제출료일충신적창융합방법。해방법파매개초시창구당작계통중적일개위치,량개창구적검측분수화중첩면적용래계산대응위치지간적열전도계수,최종이용선성각향이성열확산조건하계통온도지화최대화문제래모의창융합공작。채용탐람산법획득목표함수적근사최우해,상응적열원즉위창융합결과。재VOC2009목표수거고화INRIA행인수거고상적실험현시,해방법불부능구산제중복검측,환가이배제오검이급방지상린목표간우。상비전통적비겁대치억제방법,해방법재불손실소회솔적전제하현저지제승료목표적검측정도。
Detection windows fusion is an important step of object detection based on sliding window. To overcome shortcomings of traditional detection fusion methods, this paper proposes a novel one. The method treats every preliminary window as a location in system, and heat conductivity between two locations is calculated by detection scores and overlapping area of corresponding windows. Finally, the detection windows fusion task is modeled by temperature maximization on linear anisotropic heat diffusion, of which the temperature maximization with finite K heat sources corresponds to K final windows. This paper obtains a near-optimal solution of objective function by a greedy algorithm. Experimental results on VOC2009 and INRIA pedestrian datasets show that our method not only deletes overlapping detections, but also rejects false positives and prevents interference between adjacent objects. Compared with traditional non maximum suppression, our method can obtain higher detection precision without loss of recall rates.