红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
3期
845-850
,共6页
龙波%邢廷文%廖胜%黄智强
龍波%邢廷文%廖勝%黃智彊
룡파%형정문%료성%황지강
薄型折反系统%金属主镜%安装应力分析
薄型摺反繫統%金屬主鏡%安裝應力分析
박형절반계통%금속주경%안장응력분석
thin catadioptric system%metal mirror%mounting stress analysis
对于含口径80 mm的高次非球面金属主镜、主镜顶点到像面距离仅为17.5 mm的薄型折反式光学系统,设计了带3安装耳的主镜,并利用组件合并及周向同环交错前向安装的方式,在保证所有光机件顺利布局的基础上,有效增加了主镜镜体厚度提高了结构刚度。为分析金属主镜在安装应力下的面形,利用ANSYS预紧力单元模拟螺钉连接的预紧力,在模态校核的基础上分析了主镜柔性支撑环板在不同厚度以及安装面不平时的波面变形。提出的轴向受限的主镜组件结构方案、安装应力变形的集成分析方法及解决方案,为提高主镜的装配面形精度以保证光学系统的成像质量提供了光机设计参考。
對于含口徑80 mm的高次非毬麵金屬主鏡、主鏡頂點到像麵距離僅為17.5 mm的薄型摺反式光學繫統,設計瞭帶3安裝耳的主鏡,併利用組件閤併及週嚮同環交錯前嚮安裝的方式,在保證所有光機件順利佈跼的基礎上,有效增加瞭主鏡鏡體厚度提高瞭結構剛度。為分析金屬主鏡在安裝應力下的麵形,利用ANSYS預緊力單元模擬螺釘連接的預緊力,在模態校覈的基礎上分析瞭主鏡柔性支撐環闆在不同厚度以及安裝麵不平時的波麵變形。提齣的軸嚮受限的主鏡組件結構方案、安裝應力變形的集成分析方法及解決方案,為提高主鏡的裝配麵形精度以保證光學繫統的成像質量提供瞭光機設計參攷。
대우함구경80 mm적고차비구면금속주경、주경정점도상면거리부위17.5 mm적박형절반식광학계통,설계료대3안장이적주경,병이용조건합병급주향동배교착전향안장적방식,재보증소유광궤건순리포국적기출상,유효증가료주경경체후도제고료결구강도。위분석금속주경재안장응력하적면형,이용ANSYS예긴력단원모의라정련접적예긴력,재모태교핵적기출상분석료주경유성지탱배판재불동후도이급안장면불평시적파면변형。제출적축향수한적주경조건결구방안、안장응력변형적집성분석방법급해결방안,위제고주경적장배면형정도이보증광학계통적성상질량제공료광궤설계삼고。
The thin catadioptric system included a metal high-order aspherical primary mirror having an 80 mm aperture, and the distance between the optical vertex of primary mirror and the image interface was only 17.5 mm. To assure the layout of all components successfully and meanwhile thicken the mirror body effectively to enhance the stiffness, the primary mirror with 3 mounting ears was designed, and measures of components combination and crisscross mounting frontward in the same circumferential ring were implemented. Moreover, to evaluate the surface figure of metal mirror under mounting stress,bolt pretension was simulated by using the pretension element in ANSYS, and on the basis of modal check, primary mirror models including flexural supporting structure of different thickness were built and wavefront deformation at mounting state was analyzed. Meanwhile, the instance of flatness diversity of mounting interfaces was considered. The schemes of mirror assembly structure with restricted axial distance, the integrated analysis way of mounting stress simulation on wavefront deformation, and measures to decrease the distortion provide the reference on the optomechanical design to increase the mirror surface accuracy after assembling thus assuring the system image quality.