红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
3期
790-794
,共5页
赵曦晶%刘光斌%汪立新%何志昆%赵晗
趙晞晶%劉光斌%汪立新%何誌昆%趙晗
조희정%류광빈%왕립신%하지곤%조함
光纤陀螺%温度漂移%自适应网络模糊推理%标度因数%零偏%曲面拟合
光纖陀螺%溫度漂移%自適應網絡模糊推理%標度因數%零偏%麯麵擬閤
광섬타라%온도표이%자괄응망락모호추리%표도인수%령편%곡면의합
FOG%temperature drift%adaptive neuro-fuzzy inference%scale factor%zero bias%surface fitting
温度漂移是影响光纤陀螺精度的重要因素之一。在对光纤陀螺温度漂移特性进行实验分析的基础上,对零偏温度漂移进行了多项式拟合补偿。为了解决传统曲面拟合方法无法精确描述标度因数温度漂移与温度、转速之间的关系导致其补偿精度低的问题,提出了一种基于自适应网络模糊推理的光纤陀螺温度漂移补偿新方法。该方法基于模糊逻辑,结合最小二乘和误差反向传播混合算法,设计了自适应网络模糊推理系统,从而有效提高了光纤陀螺温度漂移补偿精度。实验结果表明,在-30~60℃温度范围和-165~165(°)/s 载体角速率范围,应用新方法对光纤陀螺温度漂移进行补偿,得到的训练误差均方根不超过0.003(°)/s,预测误差均方根不超过0.005(°)/s。
溫度漂移是影響光纖陀螺精度的重要因素之一。在對光纖陀螺溫度漂移特性進行實驗分析的基礎上,對零偏溫度漂移進行瞭多項式擬閤補償。為瞭解決傳統麯麵擬閤方法無法精確描述標度因數溫度漂移與溫度、轉速之間的關繫導緻其補償精度低的問題,提齣瞭一種基于自適應網絡模糊推理的光纖陀螺溫度漂移補償新方法。該方法基于模糊邏輯,結閤最小二乘和誤差反嚮傳播混閤算法,設計瞭自適應網絡模糊推理繫統,從而有效提高瞭光纖陀螺溫度漂移補償精度。實驗結果錶明,在-30~60℃溫度範圍和-165~165(°)/s 載體角速率範圍,應用新方法對光纖陀螺溫度漂移進行補償,得到的訓練誤差均方根不超過0.003(°)/s,預測誤差均方根不超過0.005(°)/s。
온도표이시영향광섬타라정도적중요인소지일。재대광섬타라온도표이특성진행실험분석적기출상,대령편온도표이진행료다항식의합보상。위료해결전통곡면의합방법무법정학묘술표도인수온도표이여온도、전속지간적관계도치기보상정도저적문제,제출료일충기우자괄응망락모호추리적광섬타라온도표이보상신방법。해방법기우모호라집,결합최소이승화오차반향전파혼합산법,설계료자괄응망락모호추리계통,종이유효제고료광섬타라온도표이보상정도。실험결과표명,재-30~60℃온도범위화-165~165(°)/s 재체각속솔범위,응용신방법대광섬타라온도표이진행보상,득도적훈련오차균방근불초과0.003(°)/s,예측오차균방근불초과0.005(°)/s。
The temperature drift is one of main factors influencing on the precision of a fiber optic gyroscope (FOG). The characteristic of FOG temperature drift was analyzed through temperature experiments. The zero bias temperature drift was compensated using the polynomial fitting method. To deal with the problem of poor compensation precision caused by the fact that the traditional surface fitting method can not describe the relationship between the scale factor temperature drift and the temperature or the angular rate accurately, a novel compensation approach for FOG temperature drift was proposed based on the adaptive neuro-fuzzy inference method. Based on the fuzzy logic, the approach combines the least square method with the back-propagation hybrid optimization algorithm to design an adaptive neuro-fuzzy inference system, so the compensation precision was improved effectively. The experiment results show that the training error root mean square and the predicted error root mean square of the new compensation approach are less than 0.003(°)/s and 0.005(°)/s respectively in the temperature range from-30℃ to -60℃ and the angular rate range from -165(°)/s to 165(°)/s.