冶金动力
冶金動力
야금동력
METALLURGICAL POWER
2014年
4期
58-60,65
,共4页
加热炉炉温%学习速率%动量因子%BP神经网络
加熱爐爐溫%學習速率%動量因子%BP神經網絡
가열로로온%학습속솔%동량인자%BP신경망락
temperature inside heating furnace%learning rate%factor of momentum%BP neural network
针对加热炉系统非线性、大滞后、大惯性,炉温难以有效预测的问题,以山东钢铁莱芜分公司宽厚板加热炉为研究对象,通过神经网络训练获得充分逼近仿真对象的系统参数,最后使用该方法对莱钢宽厚板加热炉炉温进行预测,结果说明该方法预测准确,具有较强的实践意义,为炉温控制提供了可靠依据,提高了生产效率,降低了能耗。
針對加熱爐繫統非線性、大滯後、大慣性,爐溫難以有效預測的問題,以山東鋼鐵萊蕪分公司寬厚闆加熱爐為研究對象,通過神經網絡訓練穫得充分逼近倣真對象的繫統參數,最後使用該方法對萊鋼寬厚闆加熱爐爐溫進行預測,結果說明該方法預測準確,具有較彊的實踐意義,為爐溫控製提供瞭可靠依據,提高瞭生產效率,降低瞭能耗。
침대가열로계통비선성、대체후、대관성,로온난이유효예측적문제,이산동강철래무분공사관후판가열로위연구대상,통과신경망락훈련획득충분핍근방진대상적계통삼수,최후사용해방법대래강관후판가열로로온진행예측,결과설명해방법예측준학,구유교강적실천의의,위로온공제제공료가고의거,제고료생산효솔,강저료능모。
The temperature inside heating furnace is hard to predict due to nonlinear, high hysteretic and big inertia of the system. Aimed to the wide-heavy plate heating furnace of Laiwu Steel, system parameters fully close to emulated object were obtained through neural network training. Finally this approach was used to predict temperature inside the wide-heavy plate heating furnace of Laiwu Steel, the results of which showed that the method predicts accurately, bears practical significance, provides reliable basis for furnace temperature control, improves production efficiency and reduces energy consumption.