计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
7期
190-193,234
,共5页
王强%刘晓东%高洁%米裕
王彊%劉曉東%高潔%米裕
왕강%류효동%고길%미유
模式识别%多类分类%纠错输出编码%最小二乘
模式識彆%多類分類%糾錯輸齣編碼%最小二乘
모식식별%다류분류%규착수출편마%최소이승
pattern recognition%multi-classification%Error-Correcting Output Codes(ECOC)%least square
多类分类是目标识别中必须面对的一个关键问题,现有分类器大都为二分器,无法满足对多类目标进行分类,为此,提出利用纠错输出编码方法对多类问题进行分解,即把多类问题转化成二类问题;同时讨论一种基于最小二乘法对二分器结果进行融合的策略。实验分别对UCI数据集和三种一维距离像数据集进行测试,结果表明与经典的多分类器相比,提出的多类分类策略有较高的分类正确率。
多類分類是目標識彆中必鬚麵對的一箇關鍵問題,現有分類器大都為二分器,無法滿足對多類目標進行分類,為此,提齣利用糾錯輸齣編碼方法對多類問題進行分解,即把多類問題轉化成二類問題;同時討論一種基于最小二乘法對二分器結果進行融閤的策略。實驗分彆對UCI數據集和三種一維距離像數據集進行測試,結果錶明與經典的多分類器相比,提齣的多類分類策略有較高的分類正確率。
다류분류시목표식별중필수면대적일개관건문제,현유분류기대도위이분기,무법만족대다류목표진행분류,위차,제출이용규착수출편마방법대다류문제진행분해,즉파다류문제전화성이류문제;동시토론일충기우최소이승법대이분기결과진행융합적책략。실험분별대UCI수거집화삼충일유거리상수거집진행측시,결과표명여경전적다분류기상비,제출적다류분류책략유교고적분류정학솔。
Multi-classification is the key issue in target recognition. The dichotomies so far is mostly designed for binary classification, which cannot meet the requirement of the multi-class target recognition. To solve this problem, the ECOC (Error Correcting Output Codes)is used to decompose a complex multi-classification problem into a set of binary classifi-cations. At the same time, a decoding strategy based on least square method is proposed to fusion the dichotomies’results. The experiments based on UCI and three kinds of different HRRPs validate that compared to the state-of-the-art dichotomies, the approach presented has better classification performance.