光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2014年
4期
30-34
,共5页
动平台%光电经纬仪%无激光测距%航迹测量%进近段
動平檯%光電經緯儀%無激光測距%航跡測量%進近段
동평태%광전경위의%무격광측거%항적측량%진근단
moving platform%photoelectric theodolite%no laser ranging%track measurement%approach segment
在空间较小的动平台上,光电经纬仪在目标进近下滑段离飞行目标距离很短(小于200 m),此时跟踪角速度大,很容易丢失激光合作目标,且会出现激光漫反射现象,导致激光测距信息无效。为解决无激光测距无法使用原有方法进行轨迹测量的问题,本文提出无激光测距的经纬仪单站精确测量方法,其在经纬仪精确标定的基础上,结合中线视频、经纬仪视频和平台运动姿态,采用空间几何和共线条件的方法实现目标单站定位测量。试验结果表明该方法具有标定简易、定位精度高、可靠性强等优点,动态条件下实际测量精度,飞行方向优于0.3 m,高程方向优于2.5 cm,由中线视频获得的偏航精度优于5 cm,满足测试需求。
在空間較小的動平檯上,光電經緯儀在目標進近下滑段離飛行目標距離很短(小于200 m),此時跟蹤角速度大,很容易丟失激光閤作目標,且會齣現激光漫反射現象,導緻激光測距信息無效。為解決無激光測距無法使用原有方法進行軌跡測量的問題,本文提齣無激光測距的經緯儀單站精確測量方法,其在經緯儀精確標定的基礎上,結閤中線視頻、經緯儀視頻和平檯運動姿態,採用空間幾何和共線條件的方法實現目標單站定位測量。試驗結果錶明該方法具有標定簡易、定位精度高、可靠性彊等優點,動態條件下實際測量精度,飛行方嚮優于0.3 m,高程方嚮優于2.5 cm,由中線視頻穫得的偏航精度優于5 cm,滿足測試需求。
재공간교소적동평태상,광전경위의재목표진근하활단리비행목표거리흔단(소우200 m),차시근종각속도대,흔용역주실격광합작목표,차회출현격광만반사현상,도치격광측거신식무효。위해결무격광측거무법사용원유방법진행궤적측량적문제,본문제출무격광측거적경위의단참정학측량방법,기재경위의정학표정적기출상,결합중선시빈、경위의시빈화평태운동자태,채용공간궤하화공선조건적방법실현목표단참정위측량。시험결과표명해방법구유표정간역、정위정도고、가고성강등우점,동태조건하실제측량정도,비행방향우우0.3 m,고정방향우우2.5 cm,유중선시빈획득적편항정도우우5 cm,만족측시수구。
On moving platform with little space, theodolite is apt to lose laser cooperation object and appear laser diffuse reflection phenomenon leading laser measurement distance information invalid, which is because of the short intercept and fast tracking angular velocity in the target approach segment (from the flying targets<200 m). In order to solve the problem that non-laser ranging can not use the original method to measure trace, a method of precise measurement by single theodolite on moving platform without laser ranging is presented based on the principle of spatial geometry and collinear condition, the combination of theodolite accurately calibration, midline video, theodolite video and motion attitudes of moving platform. Test result shows that the method has the advantage of simple calibration, high positioning accuracy and reliability, etc., and the actual measurement accuracy under dynamic conditions is better than 0.3 m in the flight direction, 2.5 cm in elevation direction and 5 cm in yaw direction obtained from midline video, meeting the test requirements.