光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2014年
4期
15-20
,共6页
刘红海%侯向华%黄旭%闫自庚
劉紅海%侯嚮華%黃旭%閆自庚
류홍해%후향화%황욱%염자경
无重叠视域%数据关联%离散粒子群算法%贝叶斯网络
無重疊視域%數據關聯%離散粒子群算法%貝葉斯網絡
무중첩시역%수거관련%리산입자군산법%패협사망락
non-overlapping%data association%discrete particle swarm algorithm%Bayesian networks
针对无重叠视域中难以将运动目标与时空因素发生关联或关联后难以求解问题,提出了采用最优路径的数据关联算法并用离散蚁群算法进行了求解。算法首先利用贝叶斯网络,将目标外观匹配相似度、空间约束和时间约束三者融合,把数据关联问题转换为网络中最优路径的选择问题;其次,把路径间样本对的平均相似度设为评价函数,评价函数取最大值时的路径就是最优路径;最后,根据目标的出现在时间和空间存在离散性的特点,用离散粒子群算法求解最优路径,并用粒子编码记录目标运动路径。本算法在由五个摄像机构成的网络中对运动目标进行跟踪仿真,结果表明能有效地求解多目标的最优路径集合,获取了目标在网络中的运动轨迹,实现了接力跟踪,具有良好的鲁棒性。
針對無重疊視域中難以將運動目標與時空因素髮生關聯或關聯後難以求解問題,提齣瞭採用最優路徑的數據關聯算法併用離散蟻群算法進行瞭求解。算法首先利用貝葉斯網絡,將目標外觀匹配相似度、空間約束和時間約束三者融閤,把數據關聯問題轉換為網絡中最優路徑的選擇問題;其次,把路徑間樣本對的平均相似度設為評價函數,評價函數取最大值時的路徑就是最優路徑;最後,根據目標的齣現在時間和空間存在離散性的特點,用離散粒子群算法求解最優路徑,併用粒子編碼記錄目標運動路徑。本算法在由五箇攝像機構成的網絡中對運動目標進行跟蹤倣真,結果錶明能有效地求解多目標的最優路徑集閤,穫取瞭目標在網絡中的運動軌跡,實現瞭接力跟蹤,具有良好的魯棒性。
침대무중첩시역중난이장운동목표여시공인소발생관련혹관련후난이구해문제,제출료채용최우로경적수거관련산법병용리산의군산법진행료구해。산법수선이용패협사망락,장목표외관필배상사도、공간약속화시간약속삼자융합,파수거관련문제전환위망락중최우로경적선택문제;기차,파로경간양본대적평균상사도설위평개함수,평개함수취최대치시적로경취시최우로경;최후,근거목표적출현재시간화공간존재리산성적특점,용리산입자군산법구해최우로경,병용입자편마기록목표운동로경。본산법재유오개섭상궤구성적망락중대운동목표진행근종방진,결과표명능유효지구해다목표적최우로경집합,획취료목표재망락중적운동궤적,실현료접력근종,구유량호적로봉성。
Moving object is very difficult to be associated with the time and space elements, and also difficult to solve the association. To solve the problems, a algorithm is proposed which take optimal path set’s data association algorithm, and the discrete particle swarm algorithm is brought to the solution. Firstly, the algorithm fuses the object’s appearance match similarity, time and space constraint by Bayesian network net, and then transforms the data association problem into the optimal path choice in the network. Secondly, the average sample pairs’ similarity between paths is set as evaluation function, and when its value is the maximum, the path is optimal. Finally, the emergence of target is discrete on time and space elements, so the discrete particle swarm algorithm is used to obtain the optimal path, and the target’s moving path is recorded by particle encode. The algorithm makes a tracking target simulation in the networks composed of five cameras. The results show that it can effectively solve the multiple target optimal path set, get the target’s movement in the network, realize the relay track, and have good robustness.