电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2014年
6期
84-90
,共7页
功率预测%光伏阵列%通径分析%气象因子%模糊聚类%神经网络%差分进化
功率預測%光伏陣列%通徑分析%氣象因子%模糊聚類%神經網絡%差分進化
공솔예측%광복진렬%통경분석%기상인자%모호취류%신경망락%차분진화
power prediction%photovoltaic array%path analysis%meteorological factors%fuzzy clustering%neural network%differential evolution
提出一种基于改进相似度的模糊聚类算法的光伏阵列短期功率预测方法,通过通径分析得到气象因子对光伏阵列日发电功率的影响权重。根据各个因子的权重自定义综合了加权相似系数和加权距离系数的统计量-相似度,建立模糊相似矩阵将历史日样本划分为若干类。然后通过分类识别获得与预测日最相似的一类历史日样本集,将其与预测日的气象因素作为预测模型的输入样本建立BP神经网络发电预测模型,并利用差分进化算法对构建的BP神经网络的参数进行了全局寻优。以实际数据对所提模型进行了验证,并与传统的基于相似日选取的光伏功率预测模型进行了对比,结果表明该模型具有更高的预测精度,有利于光伏发电系统并网运行和电网安全经济调度。
提齣一種基于改進相似度的模糊聚類算法的光伏陣列短期功率預測方法,通過通徑分析得到氣象因子對光伏陣列日髮電功率的影響權重。根據各箇因子的權重自定義綜閤瞭加權相似繫數和加權距離繫數的統計量-相似度,建立模糊相似矩陣將歷史日樣本劃分為若榦類。然後通過分類識彆穫得與預測日最相似的一類歷史日樣本集,將其與預測日的氣象因素作為預測模型的輸入樣本建立BP神經網絡髮電預測模型,併利用差分進化算法對構建的BP神經網絡的參數進行瞭全跼尋優。以實際數據對所提模型進行瞭驗證,併與傳統的基于相似日選取的光伏功率預測模型進行瞭對比,結果錶明該模型具有更高的預測精度,有利于光伏髮電繫統併網運行和電網安全經濟調度。
제출일충기우개진상사도적모호취류산법적광복진렬단기공솔예측방법,통과통경분석득도기상인자대광복진렬일발전공솔적영향권중。근거각개인자적권중자정의종합료가권상사계수화가권거리계수적통계량-상사도,건립모호상사구진장역사일양본화분위약간류。연후통과분류식별획득여예측일최상사적일류역사일양본집,장기여예측일적기상인소작위예측모형적수입양본건립BP신경망락발전예측모형,병이용차분진화산법대구건적BP신경망락적삼수진행료전국심우。이실제수거대소제모형진행료험증,병여전통적기우상사일선취적광복공솔예측모형진행료대비,결과표명해모형구유경고적예측정도,유리우광복발전계통병망운행화전망안전경제조도。
A method of PV array short-term power prediction is proposed based on improved similarity of fuzzy clustering algorithm. First, the weights of the meteorological factors are obtained through path analysis. An improved similarity is constructed integrating weighted similarity coefficients and weighted distance coefficient according to the weight of each factor. Second, the history day samples are divided into several categories by making fuzzy similarity matrix. The classification of the forecasting day is got by pattern recognition. Then the BP neural network prediction model using differential evolution algorithm to optimize BP neural network weights and threshold value is constructed based on the history data of the classification and the meteorological factors of the forecasting day. Experimental results demonstrate that the model has higher prediction accuracy compared with the traditional prediction model based on similar day selected. It is conducive to the operation of PV system operation and its security economic dispatch.