中国安全生产科学技术
中國安全生產科學技術
중국안전생산과학기술
JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY
2014年
5期
24-30
,共7页
张钦礼%陈秋松%王新民%肖崇春
張欽禮%陳鞦鬆%王新民%肖崇春
장흠례%진추송%왕신민%초숭춘
充填%全尾砂%絮凝沉降%支持向量机%遗传算法
充填%全尾砂%絮凝沉降%支持嚮量機%遺傳算法
충전%전미사%서응침강%지지향량궤%유전산법
filling%unclassified tailings%flocculating sedimentation%support vector machine%genetic algorithm
为了得到经济、高效的絮凝沉降参数,建立GA_SVM预测模型进行优化选择。在优选过程中,以供砂浓度、絮凝剂单耗和絮凝剂添加浓度作为输入因子,以沉降速度作为综合输出因子,通过室内试验,建立训练、验证样本集;建立支持向量机( SVM )回归预测模型,用训练集对模型进行训练,进而以验证集预测值的均方误差作为适应度函数,通过遗传算法( GA)对SVM模型参数进行优化选择,应用优化得到的SVM模型对絮凝沉降参数进行预测、优化。以湖南某铅锌银矿为例,通过建立的GA_SVM模型对全尾砂絮凝沉降参数进行预测,优选出该矿最佳絮凝沉降参数为:供砂浓度20%-25%,絮凝剂单耗8g/t,添加浓度0.09%。经实验对比,该模型对絮凝沉降参数预测结果的相对误差能控制在5%左右,精确度较高,可以作为絮凝沉降参数优选的一种新思路。
為瞭得到經濟、高效的絮凝沉降參數,建立GA_SVM預測模型進行優化選擇。在優選過程中,以供砂濃度、絮凝劑單耗和絮凝劑添加濃度作為輸入因子,以沉降速度作為綜閤輸齣因子,通過室內試驗,建立訓練、驗證樣本集;建立支持嚮量機( SVM )迴歸預測模型,用訓練集對模型進行訓練,進而以驗證集預測值的均方誤差作為適應度函數,通過遺傳算法( GA)對SVM模型參數進行優化選擇,應用優化得到的SVM模型對絮凝沉降參數進行預測、優化。以湖南某鉛鋅銀礦為例,通過建立的GA_SVM模型對全尾砂絮凝沉降參數進行預測,優選齣該礦最佳絮凝沉降參數為:供砂濃度20%-25%,絮凝劑單耗8g/t,添加濃度0.09%。經實驗對比,該模型對絮凝沉降參數預測結果的相對誤差能控製在5%左右,精確度較高,可以作為絮凝沉降參數優選的一種新思路。
위료득도경제、고효적서응침강삼수,건립GA_SVM예측모형진행우화선택。재우선과정중,이공사농도、서응제단모화서응제첨가농도작위수입인자,이침강속도작위종합수출인자,통과실내시험,건립훈련、험증양본집;건립지지향량궤( SVM )회귀예측모형,용훈련집대모형진행훈련,진이이험증집예측치적균방오차작위괄응도함수,통과유전산법( GA)대SVM모형삼수진행우화선택,응용우화득도적SVM모형대서응침강삼수진행예측、우화。이호남모연자은광위례,통과건립적GA_SVM모형대전미사서응침강삼수진행예측,우선출해광최가서응침강삼수위:공사농도20%-25%,서응제단모8g/t,첨가농도0.09%。경실험대비,해모형대서응침강삼수예측결과적상대오차능공제재5%좌우,정학도교고,가이작위서응침강삼수우선적일충신사로。
A GA_SVM model was established to optimize the flocculating sedimentation parameters .The tailings concentration , flocculant consumption and flocculant concentration were used as the input parameters and the sedi -mentation speed was confirmed to be the synthesized output parameter .Some training and validating samples were established through indoor experiment .Then, for predicting flocculating sedimentation parameters , a support vector machine ( SVM) regression model was established .The mean square error of the value was made as a fitness func-tion.Then, the model parameters were optimized through the genetic algorithm ( GA) .GA_SVM model was used in some mine , and the results showed that the best tailings concentration , flocculant consumption and flocculant concentration are 20%~25%, 10g/t and 0.09%.Comparing with the experiment results , the relative error of prediction result can be controlled at about 5%.The application indicates that this mode makes good effect , and it provides a new method to optimize the flocculating sedimentation parameters .