岩石力学与工程学报
巖石力學與工程學報
암석역학여공정학보
CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING
2014年
5期
1063-1074
,共12页
杨校辉%黄雪峰%朱彦鹏%姚志华%张世径
楊校輝%黃雪峰%硃彥鵬%姚誌華%張世徑
양교휘%황설봉%주언붕%요지화%장세경
土力学%大厚度自重湿陷性黄土%地基处理深度%浸水试验%剩余湿陷量%湿陷变形规律%湿陷系数
土力學%大厚度自重濕陷性黃土%地基處理深度%浸水試驗%剩餘濕陷量%濕陷變形規律%濕陷繫數
토역학%대후도자중습함성황토%지기처리심도%침수시험%잉여습함량%습함변형규률%습함계수
soil mechanics%self-weight collapse loess%foundation treatment depth%soaking test%remnant collapse amount%law of collapse deformation%coefficient of collapsibility
为解决大厚度自重湿陷性黄土地区地基处理深度和湿陷性评价等难题,在湿陷性黄土厚度大于36.5 m的场地进行以下浸水试验:不同深度的挤密桩处理地基深层浸水载荷试验,不同深度的孔内深层强夯处理地基载荷浸水试验,不打注水孔、埋设TDR水分计的原位浸水试验。研究结果表明:(1)大厚度自重湿陷性黄土地基处理6~12 m、深层浸水时,发生显著地基下沉;15~20 m时,地基沉降较小;处理深度大于20 m时,地基沉降基本可忽略。(2)浸水试坑22.5~25.0 m 以上土体含水率增加较快,甚至达到饱和,以下土体含水率增加缓慢,基本没有发生湿陷。建议22.5~25.0 m 作为大厚度自重湿陷性黄土地基处理和湿陷性评价的临界深度。(3)大厚度自重湿陷性黄土地基在采取有效的综合处理措施之后,甲类建筑可以不全部消除湿陷量,乙、丙类建筑可以根据控制建议适当放宽对剩余湿陷量的要求。(4)不同地区、不同微结构类型土的湿陷性应当采用不同的湿陷系数 sδ来判定,即“湿陷系数 sδ=0.015”在自基础底面至基底下15 m的范围内可继续使用;15 m以下适当放宽,按不同深度对δzs进行修正,可使大厚度自重湿陷性黄土湿陷性评价趋于合理,有效节约大量地基处理费用。
為解決大厚度自重濕陷性黃土地區地基處理深度和濕陷性評價等難題,在濕陷性黃土厚度大于36.5 m的場地進行以下浸水試驗:不同深度的擠密樁處理地基深層浸水載荷試驗,不同深度的孔內深層彊夯處理地基載荷浸水試驗,不打註水孔、埋設TDR水分計的原位浸水試驗。研究結果錶明:(1)大厚度自重濕陷性黃土地基處理6~12 m、深層浸水時,髮生顯著地基下沉;15~20 m時,地基沉降較小;處理深度大于20 m時,地基沉降基本可忽略。(2)浸水試坑22.5~25.0 m 以上土體含水率增加較快,甚至達到飽和,以下土體含水率增加緩慢,基本沒有髮生濕陷。建議22.5~25.0 m 作為大厚度自重濕陷性黃土地基處理和濕陷性評價的臨界深度。(3)大厚度自重濕陷性黃土地基在採取有效的綜閤處理措施之後,甲類建築可以不全部消除濕陷量,乙、丙類建築可以根據控製建議適噹放寬對剩餘濕陷量的要求。(4)不同地區、不同微結構類型土的濕陷性應噹採用不同的濕陷繫數 sδ來判定,即“濕陷繫數 sδ=0.015”在自基礎底麵至基底下15 m的範圍內可繼續使用;15 m以下適噹放寬,按不同深度對δzs進行脩正,可使大厚度自重濕陷性黃土濕陷性評價趨于閤理,有效節約大量地基處理費用。
위해결대후도자중습함성황토지구지기처리심도화습함성평개등난제,재습함성황토후도대우36.5 m적장지진행이하침수시험:불동심도적제밀장처리지기심층침수재하시험,불동심도적공내심층강항처리지기재하침수시험,불타주수공、매설TDR수분계적원위침수시험。연구결과표명:(1)대후도자중습함성황토지기처리6~12 m、심층침수시,발생현저지기하침;15~20 m시,지기침강교소;처리심도대우20 m시,지기침강기본가홀략。(2)침수시갱22.5~25.0 m 이상토체함수솔증가교쾌,심지체도포화,이하토체함수솔증가완만,기본몰유발생습함。건의22.5~25.0 m 작위대후도자중습함성황토지기처리화습함성평개적림계심도。(3)대후도자중습함성황토지기재채취유효적종합처리조시지후,갑류건축가이불전부소제습함량,을、병류건축가이근거공제건의괄당방관대잉여습함량적요구。(4)불동지구、불동미결구류형토적습함성응당채용불동적습함계수 sδ래판정,즉“습함계수 sδ=0.015”재자기출저면지기저하15 m적범위내가계속사용;15 m이하괄당방관,안불동심도대δzs진행수정,가사대후도자중습함성황토습함성평개추우합리,유효절약대량지기처리비용。
The in-situ soaking tests on loess collapsibility upon deadweight with the thickness greater than 36.6 m were carried out including a deep layer soaking test on a foundation treated with compaction piles of different lengths,a soaking test on a foundation treated with the deep dynamic compaction inside holes and a soaking test on a foundation buried with TDR moisture meters without water injection holes. The significant foundation subsidence occurred due to deep soaking when the thick deadweight collapsible loess foundation was treated 6 to 12 m in depths upon. When the depths of treatment were from 15 to 20 m,the ground settlement upon deep soaking was small. When the treatment depth was more than 20 m,the settlements of the foundation can be ignored. When the water pit of soaking test was 22.5 to 25.0 m in depth,the soil moisture content increased rapidly and even reached saturation,while if the water pit was deeper,the moisture content increased slowly with little collapse of loess. So 22.5 to 25 m can be viewed as the critical depth of foundation treatment and collapsibility evaluation for thick deadweight collapsible loess. The collapsibility in different regions and soil microstructures should be evaluated adopting different coefficients of collapsibility.