光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2014年
5期
77-82
,共6页
纪利娥%杨风暴%王志社%陈磊
紀利娥%楊風暴%王誌社%陳磊
기리아%양풍폭%왕지사%진뢰
图像配准%可见光图像%红外图像反相%SURF特征%双向匹配
圖像配準%可見光圖像%紅外圖像反相%SURF特徵%雙嚮匹配
도상배준%가견광도상%홍외도상반상%SURF특정%쌍향필배
image registration%visible images%negative image of infrared image%SUFR feature%bi-directional matching
特征匹配的准确率影响图像配准的精度,是基于特征配准方法的重点和难点之一。为了解决单向最近邻/次近邻法所导致特征点一对多的误匹配问题,提出了一种红外和可见光图像的特征双向匹配方法。首先,对红外图像进行反相和直方图均衡化处理,增强两类图像的相似性,提取数量更多重复率高的共有特征;其次,对提取的SURF(Speed-up Robust Feature)特征进行双向最近邻/次近邻粗匹配,确保特征匹配的一致性,降低误匹配率,并利用RANSAC(Random Sample Consensus)算法对特征点进行二次匹配,实现特征点精确匹配。实验结果表明,该算法在正确匹配率和配准精度方面都优于传统SURF的单向最近邻/次近邻匹配方法,具有有效性。
特徵匹配的準確率影響圖像配準的精度,是基于特徵配準方法的重點和難點之一。為瞭解決單嚮最近鄰/次近鄰法所導緻特徵點一對多的誤匹配問題,提齣瞭一種紅外和可見光圖像的特徵雙嚮匹配方法。首先,對紅外圖像進行反相和直方圖均衡化處理,增彊兩類圖像的相似性,提取數量更多重複率高的共有特徵;其次,對提取的SURF(Speed-up Robust Feature)特徵進行雙嚮最近鄰/次近鄰粗匹配,確保特徵匹配的一緻性,降低誤匹配率,併利用RANSAC(Random Sample Consensus)算法對特徵點進行二次匹配,實現特徵點精確匹配。實驗結果錶明,該算法在正確匹配率和配準精度方麵都優于傳統SURF的單嚮最近鄰/次近鄰匹配方法,具有有效性。
특정필배적준학솔영향도상배준적정도,시기우특정배준방법적중점화난점지일。위료해결단향최근린/차근린법소도치특정점일대다적오필배문제,제출료일충홍외화가견광도상적특정쌍향필배방법。수선,대홍외도상진행반상화직방도균형화처리,증강량류도상적상사성,제취수량경다중복솔고적공유특정;기차,대제취적SURF(Speed-up Robust Feature)특정진행쌍향최근린/차근린조필배,학보특정필배적일치성,강저오필배솔,병이용RANSAC(Random Sample Consensus)산법대특정점진행이차필배,실현특정점정학필배。실험결과표명,해산법재정학필배솔화배준정도방면도우우전통SURF적단향최근린/차근린필배방법,구유유효성。
Feature matching accuracy affects the precision of image registration, which is one of difficult key points for image registration based on features. In order to solve feature points one-to-many mismatching problem caused by the ratio of the closest neighbor and second closest neighbor from one direction, a bidirectional matching method of features for image registration of visible and infrared image is put forward. Firstly, for enhancing the similarity of two images, image reverse and histogram equalization are adopted to process infrared image, so that more consistent features of high repetition rate are extracted. Next, SURF features are matched bilaterally by using the ratio of the closest neighbor and second closest neighbor, to ensure the consistency between feature matching and reduce matching error rate, and then RANSAC is applied to match feature again. Through the two matches, it can realize precise features matching. The experiment results show that the proposed method is better than traditional SURF feature unilateral matching algorithm based on the ratio of the closest neighbor and second closest neighbor in the correct matching ratio and registration accuracy, and the validity of the method suggested is proved.