计算机系统应用
計算機繫統應用
계산궤계통응용
APPLICATIONS OF THE COMPUTER SYSTEMS
2014年
5期
152-157
,共6页
自适应残差权重%协同表示%分类算法
自適應殘差權重%協同錶示%分類算法
자괄응잔차권중%협동표시%분류산법
adaptive weighted residuals%Collaborative representation%SRC
提出了一种残差加权的多元素协同表示算法。该算法针对SRC的单一鉴别性不足,对样本提出样本与字典的多元素分解并分别进行相应的协同表示,自适应地学习出多元素的残差权重并进行线性加权,从而提高分类的性能。实验表明:自适应残差加权的多元素协同表示分类算法,能够有效提高识别性能。
提齣瞭一種殘差加權的多元素協同錶示算法。該算法針對SRC的單一鑒彆性不足,對樣本提齣樣本與字典的多元素分解併分彆進行相應的協同錶示,自適應地學習齣多元素的殘差權重併進行線性加權,從而提高分類的性能。實驗錶明:自適應殘差加權的多元素協同錶示分類算法,能夠有效提高識彆性能。
제출료일충잔차가권적다원소협동표시산법。해산법침대SRC적단일감별성불족,대양본제출양본여자전적다원소분해병분별진행상응적협동표시,자괄응지학습출다원소적잔차권중병진행선성가권,종이제고분류적성능。실험표명:자괄응잔차가권적다원소협동표시분류산법,능구유효제고식별성능。
An adaptive weighted residuals multi-element collaborative representation classification is proposed in this paper. To address the weak discriminative power of SRC (sparse representation classifier) method, we propose using multiple elements to represent each element and construct multiple collaborative representation for classification. To reflect the different element with different importance and discriminative power, we present adaptive weighted residuals method to linearly combine different element representations for classification. Experimental results demonstrate the effectiveness and better classification accuracy of our proposed method.