计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2014年
5期
178-182
,共5页
卢先领%王洪斌%王莹莹%徐仙
盧先領%王洪斌%王瑩瑩%徐仙
로선령%왕홍빈%왕형형%서선
加速度传感器%人体行为%数据特征%小波能量%斜率%支持向量机
加速度傳感器%人體行為%數據特徵%小波能量%斜率%支持嚮量機
가속도전감기%인체행위%수거특정%소파능량%사솔%지지향량궤
acceleration sensor%human behavior%data feature%Wavelet Energy(WE)%slope%Support Vector Machine(SVM)
为提高基于加速度传感器的人体行为识别率,提出2种新的加速度数据特征。一种通过计算加速度矢量与重力方向夹角的小波能量来揭示加速度方向变化的本质,从时频分析的角度区分不同行为;另一种提取加速度数据重排后的关键点连线斜率,突出数据的差异和分布特点。将上述2种特征与常用的6种特征相结合,训练基于支持向量机的多类分类器,对7种日常行为进行识别。检测结果表明,独立检测法和留一交叉检测法对7种行为的平均识别率分别可达92.70%和95.08%。
為提高基于加速度傳感器的人體行為識彆率,提齣2種新的加速度數據特徵。一種通過計算加速度矢量與重力方嚮夾角的小波能量來揭示加速度方嚮變化的本質,從時頻分析的角度區分不同行為;另一種提取加速度數據重排後的關鍵點連線斜率,突齣數據的差異和分佈特點。將上述2種特徵與常用的6種特徵相結閤,訓練基于支持嚮量機的多類分類器,對7種日常行為進行識彆。檢測結果錶明,獨立檢測法和留一交扠檢測法對7種行為的平均識彆率分彆可達92.70%和95.08%。
위제고기우가속도전감기적인체행위식별솔,제출2충신적가속도수거특정。일충통과계산가속도시량여중력방향협각적소파능량래게시가속도방향변화적본질,종시빈분석적각도구분불동행위;령일충제취가속도수거중배후적관건점련선사솔,돌출수거적차이화분포특점。장상술2충특정여상용적6충특정상결합,훈련기우지지향량궤적다류분류기,대7충일상행위진행식별。검측결과표명,독립검측법화류일교차검측법대7충행위적평균식별솔분별가체92.70%화95.08%。
Two novel features for acceleration data are applied to improve recognition accuracy of human activities. One feature uncovers the essential of acceleration direction by calculating the Wavelet Energy(WE) of angle between acceleration vector and gravity direction, and distinguishes different activities from time-frequency analysis. The other feature extracts from the slope of key points connection after acceleration data are rearranged, which highlights the difference and distribution of acceleration data. The two novel features can be combined with the six traditional widely used features to constitute feature sets, which allows to train the multi-class classifier based on Support Vector Machine(SVM), and to identify seven Activities of Daily Living(ADL). Two test results show that the average recognition accuracy of independent test method and leave one out cross test method can reach 92.70%and 95.08%respectively.