农机化研究
農機化研究
농궤화연구
JOURNAL OF AGRICULTURAL MECHANIZATION RESEARCH
2014年
11期
34-37
,共4页
粗糙集%BP 神经网络%粮食产量%预测
粗糙集%BP 神經網絡%糧食產量%預測
조조집%BP 신경망락%양식산량%예측
rough set%BP neural network%grain production%prediction
结合粗糙集理论和 BP神经网络在信息处理方面的优势,建立了一个基于粗糙集理论和 BP 神经网络的系统模型,并在此基础上用于粮食产量预测。仿真结果表明,该模型较之传统的预测方法显著地提高了预测的速度和精度,在实际中有着良好的应用前景。
結閤粗糙集理論和 BP神經網絡在信息處理方麵的優勢,建立瞭一箇基于粗糙集理論和 BP 神經網絡的繫統模型,併在此基礎上用于糧食產量預測。倣真結果錶明,該模型較之傳統的預測方法顯著地提高瞭預測的速度和精度,在實際中有著良好的應用前景。
결합조조집이론화 BP신경망락재신식처리방면적우세,건립료일개기우조조집이론화 BP 신경망락적계통모형,병재차기출상용우양식산량예측。방진결과표명,해모형교지전통적예측방법현저지제고료예측적속도화정도,재실제중유착량호적응용전경。
Based on rough set theory and BP neural network advantages in information processing , establishes a system model based on rough set theory and BP neural network , on this basis for grain production prediction .The simulation re-sults show that compared with the traditional model and prediction method. The method in this paper significantly im-proves the speed and precision of prediction , so it has a good application prospect in practice .