山东大学学报(工学版)
山東大學學報(工學版)
산동대학학보(공학판)
JOURNAL OF SHANDONG UNIVERSITY(ENGINEERING SCIENCE)
2014年
1期
35-40
,共6页
差分盒维数%分形%特征提取%目标识别%图像分割%烟雾识别
差分盒維數%分形%特徵提取%目標識彆%圖像分割%煙霧識彆
차분합유수%분형%특정제취%목표식별%도상분할%연무식별
differential box-counting%fractal%feature extraction%object recognition%image segmentation%smoke iden-tifieation
提出了利用差分盒维数与颜色特征相结合的图像识别方法来将彩色烟雾图像从森林背景中识别出来。该方法首先用差分盒维数算法来计算整幅图像的分形维数值并基于该值对图像进行分割,再以RGB空间的烟雾颜色特征为依据,对差分盒维数方法分割出的区域进行判别,识别出烟雾区域。为改善算法的计算精度,提高算法运算速度,提出了减少子窗口内盒子的覆盖数量、改变子窗口内灰度等级的改进算法。仿真实验结果表明,基于改进的差分盒维数方法,不仅运算速度提高近50%,而且能够更好地反映图像表面的纹理信息。再结合颜色特征能从森林背景中准确的识别出烟雾。该方法可用于森林火灾的预警。
提齣瞭利用差分盒維數與顏色特徵相結閤的圖像識彆方法來將綵色煙霧圖像從森林揹景中識彆齣來。該方法首先用差分盒維數算法來計算整幅圖像的分形維數值併基于該值對圖像進行分割,再以RGB空間的煙霧顏色特徵為依據,對差分盒維數方法分割齣的區域進行判彆,識彆齣煙霧區域。為改善算法的計算精度,提高算法運算速度,提齣瞭減少子窗口內盒子的覆蓋數量、改變子窗口內灰度等級的改進算法。倣真實驗結果錶明,基于改進的差分盒維數方法,不僅運算速度提高近50%,而且能夠更好地反映圖像錶麵的紋理信息。再結閤顏色特徵能從森林揹景中準確的識彆齣煙霧。該方法可用于森林火災的預警。
제출료이용차분합유수여안색특정상결합적도상식별방법래장채색연무도상종삼림배경중식별출래。해방법수선용차분합유수산법래계산정폭도상적분형유수치병기우해치대도상진행분할,재이RGB공간적연무안색특정위의거,대차분합유수방법분할출적구역진행판별,식별출연무구역。위개선산법적계산정도,제고산법운산속도,제출료감소자창구내합자적복개수량、개변자창구내회도등급적개진산법。방진실험결과표명,기우개진적차분합유수방법,불부운산속도제고근50%,이차능구경호지반영도상표면적문리신식。재결합안색특정능종삼림배경중준학적식별출연무。해방법가용우삼림화재적예경。
The smoke recognition method was proposed which used the differential box-counting fractal dimension com-bined with the color feature, in order to effectively identify the smoke from the forest background in color image.First, differential box dimension algorithm was used to calculate the fractal dimension value of the whole image.Second, based on the value of the image segmentation and smoke color characteristics in RGB color space, smoke region was recognized according to the split of differential box counting method regional discrimination.The algorithm reduced the number of sub-window within the coverage of the box to improve the accuracy of algorithm calculation and the speed of arithmetic operation.The changed gradation within the sub-window was proposed.The results showed that the improved differential box counting method, combined with color feature technique could accurately identify the smoke.The sur-face texture information was better reflected in the image and the speed of calculation is increased by nearly 50%.This method can be used for early warning of forest fires.