兰州大学学报(自然科学版)
蘭州大學學報(自然科學版)
란주대학학보(자연과학판)
JOURNAL OF LANZHOU UNIVERSITY(NATURAL SCIENCES)
2014年
1期
89-94,100
,共7页
PROSPECT+SAIL模型%叶面积指数%敏感性函数%转换型土壤调节植被指数
PROSPECT+SAIL模型%葉麵積指數%敏感性函數%轉換型土壤調節植被指數
PROSPECT+SAIL모형%협면적지수%민감성함수%전환형토양조절식피지수
PROSPECT and SAIL model%leaf area index%sensitivity analysis%transformed soil-adjusted vegetation index
基于PROSPECT+SAIL植被辐射传输模型,通过控制不同的植被生化变量、地表参数和土壤光谱参数建立光谱数据集,定量地分析了归一化植被指数(NDVI)、比值植被指数(SR)、土壤调节植被指数(SAVI)等10种常用的植被指数(VIs)对叶面积指数(LAI)的响应.利用敏感性函数定量地筛选出具有较强适用性的转换型土壤调节植被指数(TSAVI).在此基础上,分别建立了TSAVI及常用植被指数NDVI反演LAI的模型.以张掖市南部地区的TM影像为数据源,进行了LAI的反演,并利用黑河生态水文遥感试验获得的中游LAI数据集对模型进行精度评价.结果表明: TSAVI-LAI模型最佳拟合关系为指数形式,其反演结果与LAI实测值的偏差最小(0.200), R2最大(0.686), RMSE最小(0.397). TSAVI可以作为较强适用性植被指数来进行LAI的反演.
基于PROSPECT+SAIL植被輻射傳輸模型,通過控製不同的植被生化變量、地錶參數和土壤光譜參數建立光譜數據集,定量地分析瞭歸一化植被指數(NDVI)、比值植被指數(SR)、土壤調節植被指數(SAVI)等10種常用的植被指數(VIs)對葉麵積指數(LAI)的響應.利用敏感性函數定量地篩選齣具有較彊適用性的轉換型土壤調節植被指數(TSAVI).在此基礎上,分彆建立瞭TSAVI及常用植被指數NDVI反縯LAI的模型.以張掖市南部地區的TM影像為數據源,進行瞭LAI的反縯,併利用黑河生態水文遙感試驗穫得的中遊LAI數據集對模型進行精度評價.結果錶明: TSAVI-LAI模型最佳擬閤關繫為指數形式,其反縯結果與LAI實測值的偏差最小(0.200), R2最大(0.686), RMSE最小(0.397). TSAVI可以作為較彊適用性植被指數來進行LAI的反縯.
기우PROSPECT+SAIL식피복사전수모형,통과공제불동적식피생화변량、지표삼수화토양광보삼수건립광보수거집,정량지분석료귀일화식피지수(NDVI)、비치식피지수(SR)、토양조절식피지수(SAVI)등10충상용적식피지수(VIs)대협면적지수(LAI)적향응.이용민감성함수정량지사선출구유교강괄용성적전환형토양조절식피지수(TSAVI).재차기출상,분별건립료TSAVI급상용식피지수NDVI반연LAI적모형.이장액시남부지구적TM영상위수거원,진행료LAI적반연,병이용흑하생태수문요감시험획득적중유LAI수거집대모형진행정도평개.결과표명: TSAVI-LAI모형최가의합관계위지수형식,기반연결과여LAI실측치적편차최소(0.200), R2최대(0.686), RMSE최소(0.397). TSAVI가이작위교강괄용성식피지수래진행LAI적반연.
A simulated spectral dataset was built by using PROSPECT and SAIL vegetation radiative transfer models with various vegetation biochemical parameters, surface parameters and soil spectral parameters. Based on the dataset, the responses of ten vegetation indexes (VIs), such as commonly used normalized difference vegetation index (NDVI), simple ratio (SR) and soil adjusted vegetation index (SAVI), etc, to leaf area index (LAI) were quantitatively analyzed. A sensitivity analysis indicated that the transformed soil-adjusted vegetation index (TSAVI) was more applicable for LAI estimation than other VIs. Then models of TSAVI-LAI and NDVI-LAI were constructed respectively. Using TM images of the southern region in Zhangye as a data source, the LAI was inversed and validation done by employing the data set of vegetation LAI measured in the middle reaches of the Heihe River Basin. The results indicated that the TSAVI-LAI exponential model was the best for LAI inversion with a bias error of 0.200, R2 of 0.686 and RMSE of 0.397. It is concluded that TSAVI can be used as a vegetation index with strong applicability for LAI inversion.