空军工程大学学报(自然科学版)
空軍工程大學學報(自然科學版)
공군공정대학학보(자연과학판)
JOURNAL OF AIR FORCE ENGINEERING UNIVERSITY (NATURAL SCIENCE EDITION)
2014年
1期
67-71
,共5页
王杰%毛玉泉%张衡阳%袁天%郭尧
王傑%毛玉泉%張衡暘%袁天%郭堯
왕걸%모옥천%장형양%원천%곽요
变换域通信系统%基函数%功率谱翻转%抗干扰
變換域通信繫統%基函數%功率譜翻轉%抗榦擾
변환역통신계통%기함수%공솔보번전%항간우
TDCS%basis function%power spectrum flip%anti-jamming
针对变换域通信系统基函数生成过程中硬判决门限难以精确设置且判决复杂度高的问题,提出了一种功率谱翻转的基函数生成方法。该方法在对电磁环境采样估计的基础上,利用环境谱翻转来构造基函数幅度谱,省去了传统门限值设置和判决的步骤,从而大大降低了通信系统的运算复杂度;另外,由于没有完全舍弃被干扰的频段,与传统的“0”、“1”硬判决相比,该方法生成的基函数频率组成更加丰富而具有更好的相关特性。仿真结果表明:功率反转的基函数生成方法可以降低系统的运算复杂度,同时提高基函数的相关性能,为 TDCS 的深入研究提供了新的思路。
針對變換域通信繫統基函數生成過程中硬判決門限難以精確設置且判決複雜度高的問題,提齣瞭一種功率譜翻轉的基函數生成方法。該方法在對電磁環境採樣估計的基礎上,利用環境譜翻轉來構造基函數幅度譜,省去瞭傳統門限值設置和判決的步驟,從而大大降低瞭通信繫統的運算複雜度;另外,由于沒有完全捨棄被榦擾的頻段,與傳統的“0”、“1”硬判決相比,該方法生成的基函數頻率組成更加豐富而具有更好的相關特性。倣真結果錶明:功率反轉的基函數生成方法可以降低繫統的運算複雜度,同時提高基函數的相關性能,為 TDCS 的深入研究提供瞭新的思路。
침대변환역통신계통기함수생성과정중경판결문한난이정학설치차판결복잡도고적문제,제출료일충공솔보번전적기함수생성방법。해방법재대전자배경채양고계적기출상,이용배경보번전래구조기함수폭도보,성거료전통문한치설치화판결적보취,종이대대강저료통신계통적운산복잡도;령외,유우몰유완전사기피간우적빈단,여전통적“0”、“1”경판결상비,해방법생성적기함수빈솔조성경가봉부이구유경호적상관특성。방진결과표명:공솔반전적기함수생성방법가이강저계통적운산복잡도,동시제고기함수적상관성능,위 TDCS 적심입연구제공료신적사로。
Aimed at the problem that the decision threshold is difficult to precisely set and the complexity of hard decision is high,a new method of power spectrum flip to generate basis function is proposed based on the sampling and estimates of electromagnetic environmental and the environmental spectrum flip is used to construct basis function's amplitude spectrum.In this way,lots of the threshold setting and decision steps are eliminated,thus greatly reducing the computational complexity in the communication system.Further-more,compared with the traditional ‘0’and ‘1 ’hard decision method,the new method can be used to generate the basis function with more frequency components and a better correlation performance because the jammed band is not discarded completely.Simulation results show that the new method of generating basis function in power spectrum flip can reduce the computational complexity of the communication sys-tem and simultaneously improve the correlation performance of the basis function,which provides a new way of thinking for the in-depth study of TDCS.