红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2013年
10期
2707-2711
,共5页
流形学习%等距特征映射%特征提取%高光谱遥感数据分类
流形學習%等距特徵映射%特徵提取%高光譜遙感數據分類
류형학습%등거특정영사%특정제취%고광보요감수거분류
manifold learning%isometric feature mapping%feature extraction%hyperspectral remote sensing data classification
为挖掘高光谱遥感数据内在的非线性结构特性,采用全局化流形学习算法等距特征映射(ISOMAP)对高光谱遥感数据进行非线性降维,并取得了优于常用的最小噪声分离(MNF)变换方法的结果,具有更好的数据压缩性能。将光谱角相似性度量方法用于ISOMAP算法,取得良好的降维效果。通过把ISOMAP降维算法和k-最邻近分类器相结合对降维后子空间特征进行分类,实验表明:ISOMAP利用较少的特征维数获得比MNF更高的分类精度,并达到较高稳定的分类精度,尤其对难以区分、光谱相似的两类别问题,ISOMAP的特征维数能够有效的提高两类别的可分性。
為挖掘高光譜遙感數據內在的非線性結構特性,採用全跼化流形學習算法等距特徵映射(ISOMAP)對高光譜遙感數據進行非線性降維,併取得瞭優于常用的最小譟聲分離(MNF)變換方法的結果,具有更好的數據壓縮性能。將光譜角相似性度量方法用于ISOMAP算法,取得良好的降維效果。通過把ISOMAP降維算法和k-最鄰近分類器相結閤對降維後子空間特徵進行分類,實驗錶明:ISOMAP利用較少的特徵維數穫得比MNF更高的分類精度,併達到較高穩定的分類精度,尤其對難以區分、光譜相似的兩類彆問題,ISOMAP的特徵維數能夠有效的提高兩類彆的可分性。
위알굴고광보요감수거내재적비선성결구특성,채용전국화류형학습산법등거특정영사(ISOMAP)대고광보요감수거진행비선성강유,병취득료우우상용적최소조성분리(MNF)변환방법적결과,구유경호적수거압축성능。장광보각상사성도량방법용우ISOMAP산법,취득량호적강유효과。통과파ISOMAP강유산법화k-최린근분류기상결합대강유후자공간특정진행분류,실험표명:ISOMAP이용교소적특정유수획득비MNF경고적분류정도,병체도교고은정적분류정도,우기대난이구분、광보상사적량유별문제,ISOMAP적특정유수능구유효적제고량유별적가분성。
In order to address intrinsic nonlinearities of hyperspectral remote sensing data, isometric feature mapping (ISOMAP) is the most widely utilized global manifold learning approach for nonlinear dimensionality reduction. In this paper, it was employed to extract the inherent manifold of hyperspectral data and the experimental results show that ISOMAP provides a significantly more compact feature representation of hyperspectral data than the minimum noise fraction (MNF) transform. Considering the spectral information of hyperspectral data, spectral angle (SA) was applied to derive the neighborhood distances in ISOMAP algorithm, and the result was better. Extracted subspace features via ISOMAP algorithm were also implemented in conjunction with k Nearest Neighbor (kNN) classifier for classification. Experimental results show ISOMAP achieves higher classification accuracies than MNF transform, but with much smaller dimensionality. Especially, ISOMAP provides better discrimination for spectrally similar classes.