哈尔滨工程大学学报
哈爾濱工程大學學報
합이빈공정대학학보
JOURNAL OF HARBIN ENGINEERING UNIVERSITY
2014年
9期
1156-1163
,共8页
王超%王欢%赵春霞%任明武
王超%王歡%趙春霞%任明武
왕초%왕환%조춘하%임명무
先进驾驶辅助系统%车道线检测%梯度增强%逆透视变换%弱线检测%虚线检测
先進駕駛輔助繫統%車道線檢測%梯度增彊%逆透視變換%弱線檢測%虛線檢測
선진가사보조계통%차도선검측%제도증강%역투시변환%약선검측%허선검측
advanced driver assistance systems%lane detection%gradient enhancing%inverse perspective mapping%faint line detection%dotted line detection
为解决高速公路和城市道路上复杂条件下的弱线漏检问题,提出了一种基于梯度增强和逆透视验证的车道线检测方法。该方法使用车道线的结构和对比度特征提取车道线区域,利用提取的车道线区域进行车道线和道路样本的选择,并采用基于模糊线性鉴别分析获得从彩色RGB图像到灰度图像变换的最佳投影系数,以确保车道线和道路像素间的灰度差异最大,从而有效突出道路上的弱线;利用逆透视变换对候选车道线间的空间位置关系进一步验证,以此找回漏检的虚线。不同场景、不同天气状况下的实际道路图像的实验表明,方法具有很好的鲁棒性和准确性。
為解決高速公路和城市道路上複雜條件下的弱線漏檢問題,提齣瞭一種基于梯度增彊和逆透視驗證的車道線檢測方法。該方法使用車道線的結構和對比度特徵提取車道線區域,利用提取的車道線區域進行車道線和道路樣本的選擇,併採用基于模糊線性鑒彆分析穫得從綵色RGB圖像到灰度圖像變換的最佳投影繫數,以確保車道線和道路像素間的灰度差異最大,從而有效突齣道路上的弱線;利用逆透視變換對候選車道線間的空間位置關繫進一步驗證,以此找迴漏檢的虛線。不同場景、不同天氣狀況下的實際道路圖像的實驗錶明,方法具有很好的魯棒性和準確性。
위해결고속공로화성시도로상복잡조건하적약선루검문제,제출료일충기우제도증강화역투시험증적차도선검측방법。해방법사용차도선적결구화대비도특정제취차도선구역,이용제취적차도선구역진행차도선화도로양본적선택,병채용기우모호선성감별분석획득종채색RGB도상도회도도상변환적최가투영계수,이학보차도선화도로상소간적회도차이최대,종이유효돌출도로상적약선;이용역투시변환대후선차도선간적공간위치관계진일보험증,이차조회루검적허선。불동장경、불동천기상황하적실제도로도상적실험표명,방법구유흔호적로봉성화준학성。
For solving the problem of the missing detection of faint lanes in highway and urban road, a lane marker detection method based on gradient enhancing and inverse perspective mapping ( IPM) is proposed in this paper. This method first extracts potential lane markers based on the structure and contrast features of the lane marker and then selects lane marker and road samples from the extracted potential lane markers. The fuzzy linear discriminat a-nalysis is applied to obtain the most discriminative transformation coefficient from RGB color image to gray image, so that in the IPM image, the intensity difference between lane and road pixels is enlarged, which effectively en-hances the faint lane. In order to resolve missing detection of dotted lane, the IPM is further applied, and geometry relationship of potential lanes in IPM is tested and verified for removing false lanes and avoiding missing dotted lanes. Experiments on road images in different scenarios and different weather conditions demonstrate the robustness and accuracy of the proposed method.