哈尔滨工程大学学报
哈爾濱工程大學學報
합이빈공정대학학보
JOURNAL OF HARBIN ENGINEERING UNIVERSITY
2014年
9期
1142-1148
,共7页
追尾碰撞%参数估计%交互多模型%卡尔曼滤波%车车通信%全球定位系统%毫米波雷达%传感器失效容忍%距离碰撞时间
追尾踫撞%參數估計%交互多模型%卡爾曼濾波%車車通信%全毬定位繫統%毫米波雷達%傳感器失效容忍%距離踫撞時間
추미팽당%삼수고계%교호다모형%잡이만려파%차차통신%전구정위계통%호미파뢰체%전감기실효용인%거리팽당시간
rear-end collision%parameters estimation%interacting multiple model%Kalman filtering%global positio-ning system%microwave radar%vehicle to vehicle communication%sensor failure tolerance%time to collision
为准确、可靠获取高速公路汽车追尾预警算法的关键参数,提出一种基于车辆相对运动典型工况的估计方法。根据高速公路车辆不同的相对运动典型工况建立多个卡尔曼滤波系统状态模型,以全球定位系统与车车通信信息结合雷达信息作为观测量,并在运行过程中检测、容忍传感器信息的不准确甚至失效,利用交互多模型算法,实时、准确、可靠的获取两车相对距离、速度、加速度以及碰撞时间等关键参数。仿真及实车试验结果表明,估计方法具有精度高、鲁棒性和适应性好的优点,且在传感器失效的情况下依然能取得较好的估计效果。
為準確、可靠穫取高速公路汽車追尾預警算法的關鍵參數,提齣一種基于車輛相對運動典型工況的估計方法。根據高速公路車輛不同的相對運動典型工況建立多箇卡爾曼濾波繫統狀態模型,以全毬定位繫統與車車通信信息結閤雷達信息作為觀測量,併在運行過程中檢測、容忍傳感器信息的不準確甚至失效,利用交互多模型算法,實時、準確、可靠的穫取兩車相對距離、速度、加速度以及踫撞時間等關鍵參數。倣真及實車試驗結果錶明,估計方法具有精度高、魯棒性和適應性好的優點,且在傳感器失效的情況下依然能取得較好的估計效果。
위준학、가고획취고속공로기차추미예경산법적관건삼수,제출일충기우차량상대운동전형공황적고계방법。근거고속공로차량불동적상대운동전형공황건립다개잡이만려파계통상태모형,이전구정위계통여차차통신신식결합뢰체신식작위관측량,병재운행과정중검측、용인전감기신식적불준학심지실효,이용교호다모형산법,실시、준학、가고적획취량차상대거리、속도、가속도이급팽당시간등관건삼수。방진급실차시험결과표명,고계방법구유정도고、로봉성화괄응성호적우점,차재전감기실효적정황하의연능취득교호적고계효과。
In order to obtain key parameters of highway rear-end warning accurately and reliably, an estimation method is proposed based on typical relative movement working condition of vehicles. According to the different ve-hicle relative movement conditions on the highway, the multiple Kalman filtering system state models are estab-lished. Combining the global positioning system, vehicle-to-vehicle communication information and radar informa-tion as observational variables, the key parameters, such as relative distance, relative velocity, relative acceleration and TTC ( time to collision) , are accurately and reliably acquired in real time by using interacting multiple models algorithm. Moreover, the inaccurate and invalid information of sensors is detected and tolerated in this method. The simulation and trial results show that the estimation method has advantages of high accuracy, good robustness and strong adaptability. In addition, the high-quality estimation results can still be obtained even in the case of sensor malfunctions.