化工自动化及仪表
化工自動化及儀錶
화공자동화급의표
CONTROL AND INSTRUMENTS IN CHEMICAL INDUSTRY
2014年
9期
1031-1034
,共4页
BP神经网络%LDIW-PSO算法%压力传感器
BP神經網絡%LDIW-PSO算法%壓力傳感器
BP신경망락%LDIW-PSO산법%압력전감기
BP neural network%LDIW-PSO algorithm%pressure sensor
提出基于LDIW-PSO算法优化的BP神经网络温度补偿方法。优化的BP神经网络使用LDIW-PSO算法调整其权值和阈值,使之收敛速度快,不会产生局部极小值问题。通过实验和仿真结果可以看出:该算法对温度补偿精度高、误差小,效果明显。
提齣基于LDIW-PSO算法優化的BP神經網絡溫度補償方法。優化的BP神經網絡使用LDIW-PSO算法調整其權值和閾值,使之收斂速度快,不會產生跼部極小值問題。通過實驗和倣真結果可以看齣:該算法對溫度補償精度高、誤差小,效果明顯。
제출기우LDIW-PSO산법우화적BP신경망락온도보상방법。우화적BP신경망락사용LDIW-PSO산법조정기권치화역치,사지수렴속도쾌,불회산생국부겁소치문제。통과실험화방진결과가이간출:해산법대온도보상정도고、오차소,효과명현。
A LDIW-PSO algorithm-based BP neural network temperature compensation method was proposed. The optimized BP neural network employs LDIW-PSO algorithm to adjust its weights and thresholds, and the fast convergence speed incurs no local minima problem.Both experimental and simulation results show that this algorithm has small error, high precision and a significant compensation effect.