催化学报
催化學報
최화학보
CHINESE JOURNAL OF CATALYSIS
2013年
12期
2192-2199
,共8页
Yasukazu Kobayashi%李玉新%王垚%王德峥
Yasukazu Kobayashi%李玉新%王垚%王德崢
Yasukazu Kobayashi%리옥신%왕요%왕덕쟁
双吸附位Langmuir方程%甲醇吸附%二甲醚吸附%吸附热%SAPO-34
雙吸附位Langmuir方程%甲醇吸附%二甲醚吸附%吸附熱%SAPO-34
쌍흡부위Langmuir방정%갑순흡부%이갑미흡부%흡부열%SAPO-34
Dual-site%Langmuir equation%Methanol adsorption%Dimethyl ether adsorption%Differential heat of adsorption%SAPO-34 zeolite
在25,60和100°C下分别测定了甲醇及二甲醚在SAPO-34分子筛上的吸附等温线,同时用微量热法测定了微分吸附热与覆盖率的关系曲线(量热线),提出了吸附数据需要利用双吸附位Langmuir方程拟合,并获取了相应的吸附参数。对比测得的吸附等温线与量热线发现,在一定压力下,当甲醇及二甲醚在SAPO-34上达到一定吸附量后,随着吸附质分压增加,量热线快速下降,而吸附等温线显示出吸附量仍然继续增加。由此推断,在SAPO-34分子筛上存在两种吸附位--常规吸附位及弱吸附位,其中弱吸附位在高分压下继续吸附。如缺乏量热数据提供的常规吸附位饱和吸附量数据,对吸附等温线进行单吸附位拟合获取吸附参数极易导致错误结果,尤其是当吸附质分压较高时。建议采用双吸附位Langmuir方程,参照量热线提供的常规吸附位的饱和吸附量,通过拟合可以获得两种吸附位的吸附参数。
在25,60和100°C下分彆測定瞭甲醇及二甲醚在SAPO-34分子篩上的吸附等溫線,同時用微量熱法測定瞭微分吸附熱與覆蓋率的關繫麯線(量熱線),提齣瞭吸附數據需要利用雙吸附位Langmuir方程擬閤,併穫取瞭相應的吸附參數。對比測得的吸附等溫線與量熱線髮現,在一定壓力下,噹甲醇及二甲醚在SAPO-34上達到一定吸附量後,隨著吸附質分壓增加,量熱線快速下降,而吸附等溫線顯示齣吸附量仍然繼續增加。由此推斷,在SAPO-34分子篩上存在兩種吸附位--常規吸附位及弱吸附位,其中弱吸附位在高分壓下繼續吸附。如缺乏量熱數據提供的常規吸附位飽和吸附量數據,對吸附等溫線進行單吸附位擬閤穫取吸附參數極易導緻錯誤結果,尤其是噹吸附質分壓較高時。建議採用雙吸附位Langmuir方程,參照量熱線提供的常規吸附位的飽和吸附量,通過擬閤可以穫得兩種吸附位的吸附參數。
재25,60화100°C하분별측정료갑순급이갑미재SAPO-34분자사상적흡부등온선,동시용미량열법측정료미분흡부열여복개솔적관계곡선(량열선),제출료흡부수거수요이용쌍흡부위Langmuir방정의합,병획취료상응적흡부삼수。대비측득적흡부등온선여량열선발현,재일정압력하,당갑순급이갑미재SAPO-34상체도일정흡부량후,수착흡부질분압증가,량열선쾌속하강,이흡부등온선현시출흡부량잉연계속증가。유차추단,재SAPO-34분자사상존재량충흡부위--상규흡부위급약흡부위,기중약흡부위재고분압하계속흡부。여결핍량열수거제공적상규흡부위포화흡부량수거,대흡부등온선진행단흡부위의합획취흡부삼수겁역도치착오결과,우기시당흡부질분압교고시。건의채용쌍흡부위Langmuir방정,삼조량열선제공적상규흡부위적포화흡부량,통과의합가이획득량충흡부위적흡부삼수。
Adsorption isotherms of methanol and dimethyl ether on a SAPO-34 zeolite were measured at 25, 60, and 100 °C. The curves of differential heats of adsorption versus coverage (calorimetric curves) were simultaneously measured with a microcalorimeter, which showed that a simple interpretation of the adsorption isotherms would be incorrect. The calorimetric curves showed sharp drops, and the coverages at which these occurred were taken as the saturation amounts of adsorbed methanol and dimethyl ether on regular sites. However, beyond the saturation coverage, the adsorption iso-therms still showed increasing coverages, which were attributed to adsorption on weaker sites, and which should not be used during curve fitting to get the Langmuir parameters of the adsorption isotherm for the regular adsorption sites. In the absence of the calorimetric data, these regions would have been assumed to be part of the adsorption isotherm for the regular adsorption sites, which would be erroneous. To account for the existence of another weaker adsorption site which continued to be populated at high pressures, in addition to the regular adsorption site, we used the dual-site Langmuir equation with the saturation amount on the regular adsorption site obtained from the calorimetric curves. This gave good fits also in the high pressure region where adsorption mainly occurred on the weaker sites.