科技创新导报
科技創新導報
과기창신도보
SCIENCE AND TECHNOLOGY CONSULTING HERALD
2013年
35期
204-205,207
,共3页
顺序统计量%Kumaraswamy分布%矩%渐近分布
順序統計量%Kumaraswamy分佈%矩%漸近分佈
순서통계량%Kumaraswamy분포%구%점근분포
order statistics%Kumaraswamy distribution%moment%asymptotic distribution
设{,1}kX≤k≤n独立同分布,(1)(2)(),,,nXXLX为其顺序统计量,当总体服从Kum(λ,?)分布时,得到了其顺序统计量的联合概率密度、极端值顺序统计量的概率密度和k阶矩的表达式。此外还研究了极端值顺序统计量(1)X 和(n)X 的渐近分布。
設{,1}kX≤k≤n獨立同分佈,(1)(2)(),,,nXXLX為其順序統計量,噹總體服從Kum(λ,?)分佈時,得到瞭其順序統計量的聯閤概率密度、極耑值順序統計量的概率密度和k階矩的錶達式。此外還研究瞭極耑值順序統計量(1)X 和(n)X 的漸近分佈。
설{,1}kX≤k≤n독립동분포,(1)(2)(),,,nXXLX위기순서통계량,당총체복종Kum(λ,?)분포시,득도료기순서통계량적연합개솔밀도、겁단치순서통계량적개솔밀도화k계구적표체식。차외환연구료겁단치순서통계량(1)X 화(n)X 적점근분포。
Let{,1}kX≤k≤nbe independent and identicaly distributed random variables,(1)(2)(),,,nXXLXbe their order statistics. The joint probability density function of its order statistics and the density functions of extreme order statistics were obtained, when(k)X fol-owed Kumaraswamy distribution with parameters(λ,?). The explicit formulas for the moment of order k about(1)Xand(n)Xwere also obtained. What’s more, the asymptotic distributions of the extreme order statistics(1)Xand(n)Xwere discussed.