物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2014年
3期
446-452
,共7页
高素雯%兰章%吴晚霞%阙兰芳%吴季怀%林建明%黄妙良
高素雯%蘭章%吳晚霞%闕蘭芳%吳季懷%林建明%黃妙良
고소문%란장%오만하%궐란방%오계부%림건명%황묘량
TiO2纳米管阵列%染料敏化太阳能电池%光阳极%HF%TiCl4
TiO2納米管陣列%染料敏化太暘能電池%光暘極%HF%TiCl4
TiO2납미관진렬%염료민화태양능전지%광양겁%HF%TiCl4
TiO2 nanotube array%Dye-sensitized solar cel%Photoanode%HF%TiCl4
报道了一种基于TiO2纳米管(TNT)阵列正面透光型光阳极的高效染料敏化太阳能电池.将TNTs在450°C烧结后能避免其有序结构在HF处理过程中被破坏,使膜内高速电子传输通道被保留,有利于染料敏化太阳能电池(DSSC)实现高速电荷传输.再用HF、TiCl4、HF和TiCl4混合等溶剂对TNTs进行处理,提高其表面粗糙度以吸附更多染料.染料吸附量的增加能提高光阳极在300-570 nm波段光子捕获效率,该波段是染料吸收光子的主要区域.然而,在染料吸收光子较弱的长波段区域(570-800 nm)光子捕获效率的增加主要源于光阳极光散射率的提高.光阳极光子捕获效率的提高使DSSC的内外量子效率在全波段(300-800 nm)均有所增加,从而使短路电流明显提高.从电化学阻抗数据可知,与电子传输性能密切相关的电化学参数如电荷传输电阻、界面电荷复合电阻、电容、电子寿命、电子扩散长度和电子收集效率等在含处理过的TNTs光阳极DSSC中均有所改善,从而提高电池光电转换效率.含HF和TiCl4混合溶剂处理TNTs光阳极的DSSC最高光电转换效率能达到7.30%,比未处理的DSSC (5.38%)提高35.69%.
報道瞭一種基于TiO2納米管(TNT)陣列正麵透光型光暘極的高效染料敏化太暘能電池.將TNTs在450°C燒結後能避免其有序結構在HF處理過程中被破壞,使膜內高速電子傳輸通道被保留,有利于染料敏化太暘能電池(DSSC)實現高速電荷傳輸.再用HF、TiCl4、HF和TiCl4混閤等溶劑對TNTs進行處理,提高其錶麵粗糙度以吸附更多染料.染料吸附量的增加能提高光暘極在300-570 nm波段光子捕穫效率,該波段是染料吸收光子的主要區域.然而,在染料吸收光子較弱的長波段區域(570-800 nm)光子捕穫效率的增加主要源于光暘極光散射率的提高.光暘極光子捕穫效率的提高使DSSC的內外量子效率在全波段(300-800 nm)均有所增加,從而使短路電流明顯提高.從電化學阻抗數據可知,與電子傳輸性能密切相關的電化學參數如電荷傳輸電阻、界麵電荷複閤電阻、電容、電子壽命、電子擴散長度和電子收集效率等在含處理過的TNTs光暘極DSSC中均有所改善,從而提高電池光電轉換效率.含HF和TiCl4混閤溶劑處理TNTs光暘極的DSSC最高光電轉換效率能達到7.30%,比未處理的DSSC (5.38%)提高35.69%.
보도료일충기우TiO2납미관(TNT)진렬정면투광형광양겁적고효염료민화태양능전지.장TNTs재450°C소결후능피면기유서결구재HF처리과정중피파배,사막내고속전자전수통도피보류,유리우염료민화태양능전지(DSSC)실현고속전하전수.재용HF、TiCl4、HF화TiCl4혼합등용제대TNTs진행처리,제고기표면조조도이흡부경다염료.염료흡부량적증가능제고광양겁재300-570 nm파단광자포획효솔,해파단시염료흡수광자적주요구역.연이,재염료흡수광자교약적장파단구역(570-800 nm)광자포획효솔적증가주요원우광양겁광산사솔적제고.광양겁광자포획효솔적제고사DSSC적내외양자효솔재전파단(300-800 nm)균유소증가,종이사단로전류명현제고.종전화학조항수거가지,여전자전수성능밀절상관적전화학삼수여전하전수전조、계면전하복합전조、전용、전자수명、전자확산장도화전자수집효솔등재함처리과적TNTs광양겁DSSC중균유소개선,종이제고전지광전전환효솔.함HF화TiCl4혼합용제처리TNTs광양겁적DSSC최고광전전환효솔능체도7.30%,비미처리적DSSC (5.38%)제고35.69%.
An efficient front-il uminated dye-sensitized solar cell(DSSC) based on ordered TiO2 nanotube (TNT) arrays was prepared. Sintering at 450 °C avoided damage of the ordered TNTs during HF treatment. Fast electron transport channels were maintained in the membrane, for efficient charge transportat in the DSSC. The sintered TNT membranes were subsequently treated with HF, TiCl4, and HF combined with TiCl4. This formed a rougher surface, and al owed increased dye loadings. The increased dye loading improved the light harvesting efficiency of the photoanode at 300-570 nm wavelength range, which is the main absorption region of the adsorbed dye. The adsorbed dye had a low absorption at 570-800 nm wavelength range. The enhanced light harvesting efficiency of the photoanode originated from its increased diffuse reflectance. The incident-photon-to-current and absorbed-photon-to-current conversion efficiencies were increased over the entire 300-800 nm wavelength range. This resulted in an increased short-circuit current density of the DSSC. Electrochemical impedance spectroscopy indicated that electron transport and related parameters including charge transport resistance, interfacial charge recombination resistance, distributed chemical capacitance, electron lifetime, effective electron diffusion length, and col ection efficiency were significantly improved in the DSSC containing the treated TNT photoanode. This also resulted in an enhanced photovoltaic performance. The maximum power conversion efficiency from combining HF and TiCl4 treatments was 7.30%, which was a 35.69%enhancement compared with the non-treated DSSC (5.38%).