物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2014年
3期
397-407
,共11页
裴娟%郝彦忠%孙宝%李英品%范龙雪%孙硕%王尚鑫
裴娟%郝彥忠%孫寶%李英品%範龍雪%孫碩%王尚鑫
배연%학언충%손보%리영품%범룡설%손석%왕상흠
杂化太阳电池%异质结界面%界面修饰%电荷的分离与传输%光电性能
雜化太暘電池%異質結界麵%界麵脩飾%電荷的分離與傳輸%光電性能
잡화태양전지%이질결계면%계면수식%전하적분리여전수%광전성능
Hybrid solar cel%Heterojunction interface%Interfacial modification%Charge separation and transportation%Photovoltaic performance
有机-无机杂化太阳电池综合了有机、无机材料的优点,成本低、理论效率高,受到人们的广泛关注。杂化太阳电池的光活性层由无机半导体和有机共轭聚合物复合而成。当光照射到活性层上时,共轭聚合物吸收光子产生激子(电子-空穴对);激子迁移到有机给体-无机受体的异质结界面处发生解离而产生自由电子和空穴;自由电子和空穴分别向无机半导体和有机聚合物传输,从而实现电荷的分离和传导。激子在有机-无机异质结界面处的分离效率是影响电池性能的一个重要因素。有机、无机两相材料往往因为接触面积小以及相容性差使此两相材料接触不佳,激子迁移到此界面不能有效分离,从而严重影响了杂化太阳电池的效率。这个问题可以通过此界面的修饰加以改善。本文即综述了有机-无机异质结界面修饰的方法、作用和意义,并展望了杂化太阳电池未来的发展趋势和应用前景。
有機-無機雜化太暘電池綜閤瞭有機、無機材料的優點,成本低、理論效率高,受到人們的廣汎關註。雜化太暘電池的光活性層由無機半導體和有機共軛聚閤物複閤而成。噹光照射到活性層上時,共軛聚閤物吸收光子產生激子(電子-空穴對);激子遷移到有機給體-無機受體的異質結界麵處髮生解離而產生自由電子和空穴;自由電子和空穴分彆嚮無機半導體和有機聚閤物傳輸,從而實現電荷的分離和傳導。激子在有機-無機異質結界麵處的分離效率是影響電池性能的一箇重要因素。有機、無機兩相材料往往因為接觸麵積小以及相容性差使此兩相材料接觸不佳,激子遷移到此界麵不能有效分離,從而嚴重影響瞭雜化太暘電池的效率。這箇問題可以通過此界麵的脩飾加以改善。本文即綜述瞭有機-無機異質結界麵脩飾的方法、作用和意義,併展望瞭雜化太暘電池未來的髮展趨勢和應用前景。
유궤-무궤잡화태양전지종합료유궤、무궤재료적우점,성본저、이론효솔고,수도인문적엄범관주。잡화태양전지적광활성층유무궤반도체화유궤공액취합물복합이성。당광조사도활성층상시,공액취합물흡수광자산생격자(전자-공혈대);격자천이도유궤급체-무궤수체적이질결계면처발생해리이산생자유전자화공혈;자유전자화공혈분별향무궤반도체화유궤취합물전수,종이실현전하적분리화전도。격자재유궤-무궤이질결계면처적분리효솔시영향전지성능적일개중요인소。유궤、무궤량상재료왕왕인위접촉면적소이급상용성차사차량상재료접촉불가,격자천이도차계면불능유효분리,종이엄중영향료잡화태양전지적효솔。저개문제가이통과차계면적수식가이개선。본문즉종술료유궤-무궤이질결계면수식적방법、작용화의의,병전망료잡화태양전지미래적발전추세화응용전경。
Much attention has been focused on hybrid solar cells because of their low cost and high theoretical efficiencies. The photoactive layer of hybrid solar cells is composed of inorganic semiconductor and organic conjugated polymer. Excitons (electron-hole pairs) are formed upon the absorption of photons by the polymer. The excitons diffuse to the heterojunction interface between the organic donor and inorganic acceptor, and then dissociate to free electrons and holes. These electrons and holes then transfer to the inorganic and organic materials to realize charge separation and transportation. The exciton dissociation efficiency at the organic-inorganic heterojunction interface influences the photovoltaic performance of the cell. A smal contact area and poor chemical compatibility between the organic and inorganic materials decrease the exciton dissociation efficiency, and thus the overal cellefficiency. This can be overcome by modifying the heterojunction interface. This paper reviews available interfacial modification methods, their function and significance, and explores prospects for the future development and application of hybrid solar cells.