航空制造技术
航空製造技術
항공제조기술
AERONAUTICAL MANUFACTURING TECHNOLOGY
2014年
3期
74-77,85
,共5页
爬行机器人%位姿调节%制孔%运动控制%空间变换
爬行機器人%位姿調節%製孔%運動控製%空間變換
파행궤기인%위자조절%제공%운동공제%공간변환
Crawling robot%Pose adjustment%Drilling%Motion control%Space transformation
飞机制孔8足并联爬行机器人是由多个构件组成的一个复杂的多维运动系统,末端执行器姿态的调整不是通过设置独立的运动轴来实现,而是通过所有腿的复合运动(升/降)来实现。当进行制孔运动时,需要实时计算各腿的空间位置和调节量,实现刀具沿着加工点处法矢方向进行制孔。通过分析各构件的空间几何位置关系建立调姿计算局部坐标系,根据机器人的动作特点,建立末端执行器空间运动坐标系;利用机构在调姿过程中,各腿一直与动平台保持垂直这一特点,建立空间变换矩阵;根据测量系统给定的制孔处法矢,计算各腿的伸缩量和空间位置补偿量;把末端执行器看作一只虚拟的腿,可用同样的方法求得其X、Y、Z向的调整量。从而不需要设置独立的旋转轴就能实现机器人的位姿调节。
飛機製孔8足併聯爬行機器人是由多箇構件組成的一箇複雜的多維運動繫統,末耑執行器姿態的調整不是通過設置獨立的運動軸來實現,而是通過所有腿的複閤運動(升/降)來實現。噹進行製孔運動時,需要實時計算各腿的空間位置和調節量,實現刀具沿著加工點處法矢方嚮進行製孔。通過分析各構件的空間幾何位置關繫建立調姿計算跼部坐標繫,根據機器人的動作特點,建立末耑執行器空間運動坐標繫;利用機構在調姿過程中,各腿一直與動平檯保持垂直這一特點,建立空間變換矩陣;根據測量繫統給定的製孔處法矢,計算各腿的伸縮量和空間位置補償量;把末耑執行器看作一隻虛擬的腿,可用同樣的方法求得其X、Y、Z嚮的調整量。從而不需要設置獨立的鏇轉軸就能實現機器人的位姿調節。
비궤제공8족병련파행궤기인시유다개구건조성적일개복잡적다유운동계통,말단집행기자태적조정불시통과설치독립적운동축래실현,이시통과소유퇴적복합운동(승/강)래실현。당진행제공운동시,수요실시계산각퇴적공간위치화조절량,실현도구연착가공점처법시방향진행제공。통과분석각구건적공간궤하위치관계건립조자계산국부좌표계,근거궤기인적동작특점,건립말단집행기공간운동좌표계;이용궤구재조자과정중,각퇴일직여동평태보지수직저일특점,건립공간변환구진;근거측량계통급정적제공처법시,계산각퇴적신축량화공간위치보상량;파말단집행기간작일지허의적퇴,가용동양적방법구득기X、Y、Z향적조정량。종이불수요설치독립적선전축취능실현궤기인적위자조절。
The 8 feet parallel crawling ro-bot for drilling holes on the aircraft surface is a complex multi-dimensional movement system which is composed of multiple components. Pose adjustment of the end ef-fector is not achieved by independent motion axis, but by the compound movement ( up / down) of all legs. Real-time calculation of the space location and adjustment of the legs is needed when drilling hole, to make the tool drill along the normal vector direction of the drilling point. Lo-cal coordinate system is established through the analysis of the space position relations of the components. According to the movement characteristics of the end effector, space moving coordinate system is established. The characteristic that the legs keep perpendicular to the movable platform in the process of posture adjustment is utilized to establish the space transformation matrix. According to the normal vector given by the measure system, the length of all legs and spatial location compensation is calculated; Use the same method is used to get the adjustment value of X, Y, Z by taking the end effector as a virtual leg. Hence, it is not need to set independently rotary shaft to realize the pose regulation.