石油实验地质
石油實驗地質
석유실험지질
EXPERIMENTAL PETROLEUM GEOLOGY
2014年
6期
767-772,779
,共7页
喻建%杨孝%李斌%刘小静%田建锋
喻建%楊孝%李斌%劉小靜%田建鋒
유건%양효%리빈%류소정%전건봉
可动流体饱和度%孔隙结构%核磁共振%恒速压汞%高压压汞%致密油%合水地区
可動流體飽和度%孔隙結構%覈磁共振%恆速壓汞%高壓壓汞%緻密油%閤水地區
가동류체포화도%공극결구%핵자공진%항속압홍%고압압홍%치밀유%합수지구
movable fluid saturation%pore structure%NMR%constant-speed mercury injection%high-pressure mercury injection%tight oil%Heshui area
致密油储层可动流体饱和度是评价致密油潜力的关键因素之一。核磁共振技术可以获得准确的可动流体饱和度,但因其成本较高、周期较长,应用的普遍性受到限制。核磁共振、恒速压汞和高压压汞的实验原理表明,T2谱、恒速压汞曲线和高压压汞曲线均是岩石孔隙结构的反映,他们之间具有内在的一致性。相同样品的核磁共振和恒速压汞测试结果表明,致密油储层可动流体饱和度与恒速压汞总进汞饱和度相关性极强,可通过恒速压汞总进汞饱和度参数计算致密油储层的可动流体饱和度,而高压压汞7.0 MPa时的进汞饱和度与恒速压汞总进汞饱和度相同,从而提出了利用高压压汞资料计算致密油可动流体饱和度的方法。计算结果表明,合水地区致密油储层可动流体饱和度较高,以Ⅲ类和Ⅳ类储层为主,其次为Ⅱ类储层。
緻密油儲層可動流體飽和度是評價緻密油潛力的關鍵因素之一。覈磁共振技術可以穫得準確的可動流體飽和度,但因其成本較高、週期較長,應用的普遍性受到限製。覈磁共振、恆速壓汞和高壓壓汞的實驗原理錶明,T2譜、恆速壓汞麯線和高壓壓汞麯線均是巖石孔隙結構的反映,他們之間具有內在的一緻性。相同樣品的覈磁共振和恆速壓汞測試結果錶明,緻密油儲層可動流體飽和度與恆速壓汞總進汞飽和度相關性極彊,可通過恆速壓汞總進汞飽和度參數計算緻密油儲層的可動流體飽和度,而高壓壓汞7.0 MPa時的進汞飽和度與恆速壓汞總進汞飽和度相同,從而提齣瞭利用高壓壓汞資料計算緻密油可動流體飽和度的方法。計算結果錶明,閤水地區緻密油儲層可動流體飽和度較高,以Ⅲ類和Ⅳ類儲層為主,其次為Ⅱ類儲層。
치밀유저층가동류체포화도시평개치밀유잠력적관건인소지일。핵자공진기술가이획득준학적가동류체포화도,단인기성본교고、주기교장,응용적보편성수도한제。핵자공진、항속압홍화고압압홍적실험원리표명,T2보、항속압홍곡선화고압압홍곡선균시암석공극결구적반영,타문지간구유내재적일치성。상동양품적핵자공진화항속압홍측시결과표명,치밀유저층가동류체포화도여항속압홍총진홍포화도상관성겁강,가통과항속압홍총진홍포화도삼수계산치밀유저층적가동류체포화도,이고압압홍7.0 MPa시적진홍포화도여항속압홍총진홍포화도상동,종이제출료이용고압압홍자료계산치밀유가동류체포화도적방법。계산결과표명,합수지구치밀유저층가동류체포화도교고,이Ⅲ류화Ⅳ류저층위주,기차위Ⅱ류저층。
The movable fluid saturation is one of the key factors in tight oil evaluation, and can be tested accu?rately by nuclear magnetic resonance ( NMR) technology. The high cost and long cycle prohibited the widespread use of NMR technology to determine movable fluid saturation. The testing principles of NMR, constant?speed mercury injection and high?pressure mercury injection indicated that the relaxation time distributions, constant?speed mercury injection curves and high?pressure mercury injection curves are the reflections of pore structures and have the ingenerate consistency. The movable fluid saturations and total mercury saturations of the same sam?ples were tested by NMR and constant?speed mercury injection respectively. Correlation between the movable fluid saturation and the total mercury saturation was closely strong. The movable fluid saturation can be calculated from total mercury saturation. Considering the similarity between total mercury saturation of constant?speed mer?cury injection and mercury saturation at 7.0 MPa of high?pressure mercury injection, a method to determine mov?able fluid saturation of tight oil reservoirs was proposed based on high?pressure mercury injection data. The calcu?lation results indicated that the tight oil reservoirs, with high movable fluid saturation, are mainly type?Ⅲ and type?Ⅳ reservoirs, followed by type?Ⅱreservoir.