海军航空工程学院学报
海軍航空工程學院學報
해군항공공정학원학보
JOURNAL OF NAVAL AERONAUTICAL ENGINEERING INSTITUTE
2014年
1期
47-52,76
,共7页
徐鸣%左君伟%岳奎志%郁大照
徐鳴%左君偉%嶽奎誌%鬱大照
서명%좌군위%악규지%욱대조
飞机总体设计%前缘后掠角%隐身%物理光学法%数值模拟
飛機總體設計%前緣後掠角%隱身%物理光學法%數值模擬
비궤총체설계%전연후략각%은신%물리광학법%수치모의
aircraft conceptual design%leading edge sweep angle%stealth%physical optics method%numerical simulation
为了在飞机总体设计时改善其隐身性能,对机翼前缘后掠角参数化可调的飞机三维数字样机的RCS特性进行了研究。使用CATIA软件,建立机翼前缘后掠角参数化可调的飞机三维数字样机;基于物理光学法和等效电磁流法,采用RCSAnsys软件,使用X波段雷达对飞机进行探测,雷达入射波的俯仰角在-15°、0°和15°条件下,数值模拟机翼前缘后掠角在-30°~+60°之间变化时飞机的RCS特性,并对数值模拟结果进行数理统计分析。在机翼前缘后掠角变化的条件下,飞机RCS特性数值模拟结果表明:飞机头向RCS峰值之一的方位角与机翼前缘后掠角的角度相等;飞机头向RCS算术平均值特性为直机翼大、前掠翼和后掠翼小、大后掠翼更小;飞机侧向和尾向的RCS算术平均值变化相对不大。
為瞭在飛機總體設計時改善其隱身性能,對機翼前緣後掠角參數化可調的飛機三維數字樣機的RCS特性進行瞭研究。使用CATIA軟件,建立機翼前緣後掠角參數化可調的飛機三維數字樣機;基于物理光學法和等效電磁流法,採用RCSAnsys軟件,使用X波段雷達對飛機進行探測,雷達入射波的俯仰角在-15°、0°和15°條件下,數值模擬機翼前緣後掠角在-30°~+60°之間變化時飛機的RCS特性,併對數值模擬結果進行數理統計分析。在機翼前緣後掠角變化的條件下,飛機RCS特性數值模擬結果錶明:飛機頭嚮RCS峰值之一的方位角與機翼前緣後掠角的角度相等;飛機頭嚮RCS算術平均值特性為直機翼大、前掠翼和後掠翼小、大後掠翼更小;飛機側嚮和尾嚮的RCS算術平均值變化相對不大。
위료재비궤총체설계시개선기은신성능,대궤익전연후략각삼수화가조적비궤삼유수자양궤적RCS특성진행료연구。사용CATIA연건,건립궤익전연후략각삼수화가조적비궤삼유수자양궤;기우물리광학법화등효전자류법,채용RCSAnsys연건,사용X파단뢰체대비궤진행탐측,뢰체입사파적부앙각재-15°、0°화15°조건하,수치모의궤익전연후략각재-30°~+60°지간변화시비궤적RCS특성,병대수치모의결과진행수리통계분석。재궤익전연후략각변화적조건하,비궤RCS특성수치모의결과표명:비궤두향RCS봉치지일적방위각여궤익전연후략각적각도상등;비궤두향RCS산술평균치특성위직궤익대、전략익화후략익소、대후략익경소;비궤측향화미향적RCS산술평균치변화상대불대。
In this paper, the RCS characteristics of the aircraft 3-D digital prototype with a parametric adjustable wing lead-ing edge sweep angle was studied,in order to improve stealth performance in the aircraft conceptual design. The CATIA was used to establish aircraft 3-D prototype. RCS Ansys and X-band radar were used to detect the aircraft based on physi-cal optics and the equivalent electromagnetic flow method. In the radar incident wave pitch angle of-15° , 0° and 15° , it conducted numerical simulation on RCS of the aircraft when the wing leading edge sweep angle varied between-30° and 60°. And then statistical analysis on the simulation results were conducted. In the condition of mutative wing leading edge sweep angle, the numerical simulation results of the aircraft RCS showed that the azimuth angle of the aircraft prior to the RCS peak equaled to the wing leading edge sweep angle and the features of the arithmetic mean of the aircraft prior to the RCS were that the bigger the straight wing, the smaller the forward-swept wing and swept wing and the even smaller the large swept wing, and relatively little change happed to the arithmetic mean value of the RCS of the aircraft lateral and tail.