系统工程理论与实践
繫統工程理論與實踐
계통공정이론여실천
SYSTEMS ENGINEERING--THEORY & PRACTICE
2013年
10期
2449-2461
,共13页
金融相关噪声%随机矩阵理论%组合风险%最小扰动稳定性
金融相關譟聲%隨機矩陣理論%組閤風險%最小擾動穩定性
금융상관조성%수궤구진이론%조합풍험%최소우동은정성
financial correlation noise%random matrix theory%portfolio risk%stability of minimum perturbation
金融相关矩阵的计算是构建金融投资组合的基础.为解决金融相关矩阵的“维数灾祸”问题,进而促进金融投资组合风险的优化,受基于随机矩阵理论(RMT)和特征向量的Krzanowski稳定性的KR去噪法的启发,对收益相关矩阵特征值增大时的特征向量最小扰动进行了数学推导,并将以该扰动衡量的特征向量的Krzanowski稳定性引入到RMT去噪法中,进而建立对金融收益相关矩阵去噪的KRMIN方法.KRMIN法对KR法的算法进行了两方面的优化.一方面,KRMIN法对KR法的特征值设定方法进行了扩展;另一方面,KRMIN法采用模拟退火算法计算特征值.理论研究表明,由于在收益相关矩阵特征向量的稳定性和特征值算法准确性上的优势,KRMIN方法将获得比KR法更好的组合风险优化效果.通过bootstrap方法,开展了将LCPB法、PG+法、KR法和KRMIN法用于不同数量股票的投资组合优化的实证研究.结果表明:LCPB法、PG+法、KR法和KRMIN法都能通过股票收益相关矩阵去噪而带来投资组合风险的优化;基于收益相关矩阵特征向量的Krzanowski稳定性的KR法和KRMIN法的组合风险比其他两种方法更低;由KRMIN法得到的收益相关矩阵的特征向量稳定性和组合风险优化效果好于KR法.
金融相關矩陣的計算是構建金融投資組閤的基礎.為解決金融相關矩陣的“維數災禍”問題,進而促進金融投資組閤風險的優化,受基于隨機矩陣理論(RMT)和特徵嚮量的Krzanowski穩定性的KR去譟法的啟髮,對收益相關矩陣特徵值增大時的特徵嚮量最小擾動進行瞭數學推導,併將以該擾動衡量的特徵嚮量的Krzanowski穩定性引入到RMT去譟法中,進而建立對金融收益相關矩陣去譟的KRMIN方法.KRMIN法對KR法的算法進行瞭兩方麵的優化.一方麵,KRMIN法對KR法的特徵值設定方法進行瞭擴展;另一方麵,KRMIN法採用模擬退火算法計算特徵值.理論研究錶明,由于在收益相關矩陣特徵嚮量的穩定性和特徵值算法準確性上的優勢,KRMIN方法將穫得比KR法更好的組閤風險優化效果.通過bootstrap方法,開展瞭將LCPB法、PG+法、KR法和KRMIN法用于不同數量股票的投資組閤優化的實證研究.結果錶明:LCPB法、PG+法、KR法和KRMIN法都能通過股票收益相關矩陣去譟而帶來投資組閤風險的優化;基于收益相關矩陣特徵嚮量的Krzanowski穩定性的KR法和KRMIN法的組閤風險比其他兩種方法更低;由KRMIN法得到的收益相關矩陣的特徵嚮量穩定性和組閤風險優化效果好于KR法.
금융상관구진적계산시구건금융투자조합적기출.위해결금융상관구진적“유수재화”문제,진이촉진금융투자조합풍험적우화,수기우수궤구진이론(RMT)화특정향량적Krzanowski은정성적KR거조법적계발,대수익상관구진특정치증대시적특정향량최소우동진행료수학추도,병장이해우동형량적특정향량적Krzanowski은정성인입도RMT거조법중,진이건립대금융수익상관구진거조적KRMIN방법.KRMIN법대KR법적산법진행료량방면적우화.일방면,KRMIN법대KR법적특정치설정방법진행료확전;령일방면,KRMIN법채용모의퇴화산법계산특정치.이론연구표명,유우재수익상관구진특정향량적은정성화특정치산법준학성상적우세,KRMIN방법장획득비KR법경호적조합풍험우화효과.통과bootstrap방법,개전료장LCPB법、PG+법、KR법화KRMIN법용우불동수량고표적투자조합우화적실증연구.결과표명:LCPB법、PG+법、KR법화KRMIN법도능통과고표수익상관구진거조이대래투자조합풍험적우화;기우수익상관구진특정향량적Krzanowski은정성적KR법화KRMIN법적조합풍험비기타량충방법경저;유KRMIN법득도적수익상관구진적특정향량은정성화조합풍험우화효과호우KR법.