光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
2期
520-525
,共6页
李晋%赵庚星%常春艳%刘海腾
李晉%趙庚星%常春豔%劉海騰
리진%조경성%상춘염%류해등
HSI高光谱数据%TM图像%光谱特征%盐渍化程度
HSI高光譜數據%TM圖像%光譜特徵%鹽漬化程度
HSI고광보수거%TM도상%광보특정%염지화정도
HSI hyperspectral data%TM image%Spectral characteristics%Salinization degree
选择黄河三角洲垦利县代表性盐碱化区域为研究区,以2011年3月15日HJ-1A卫星 HSI高光谱影像和2011年3月22日T M影像为信息源,经几何纠正、图像裁剪、大气校正等预处理,分析不同盐渍化程度土地、水体、滩涂等主要地类的光谱特征,确定地类信息提取特征波段。结合土壤盐分含量,采用定量与定性相结合规则,构建地类信息提取模型,以决策树分类方法进行图像分类,提取土地盐渍化信息。利用地表点位土壤含盐量数据对地表土地盐渍化程度的化学分析结果,对遥感解译数据进行精度验证,并对高光谱和多光谱影像的分类精度进行比较分析。结果表明:HSI图像的总体分类精度达96.43%,Kappa系数为95.59%,而T M图像的总体分类精度为89.17%,Kappa系数为86.74%,说明相比多光谱T M数据,基于高光谱图像可以更为准确有效地提取土地盐渍化信息;由分类结果图可以看出,高光谱影像土地盐渍化的区分度高于多光谱影像。该研究探索了高光谱图像土地盐渍化信息的提取技术方法,提供了不同盐渍化土地的分布比例数据,可为黄河三角洲滨海盐碱土地资源的科学利用与管理提供决策依据。
選擇黃河三角洲墾利縣代錶性鹽堿化區域為研究區,以2011年3月15日HJ-1A衛星 HSI高光譜影像和2011年3月22日T M影像為信息源,經幾何糾正、圖像裁剪、大氣校正等預處理,分析不同鹽漬化程度土地、水體、灘塗等主要地類的光譜特徵,確定地類信息提取特徵波段。結閤土壤鹽分含量,採用定量與定性相結閤規則,構建地類信息提取模型,以決策樹分類方法進行圖像分類,提取土地鹽漬化信息。利用地錶點位土壤含鹽量數據對地錶土地鹽漬化程度的化學分析結果,對遙感解譯數據進行精度驗證,併對高光譜和多光譜影像的分類精度進行比較分析。結果錶明:HSI圖像的總體分類精度達96.43%,Kappa繫數為95.59%,而T M圖像的總體分類精度為89.17%,Kappa繫數為86.74%,說明相比多光譜T M數據,基于高光譜圖像可以更為準確有效地提取土地鹽漬化信息;由分類結果圖可以看齣,高光譜影像土地鹽漬化的區分度高于多光譜影像。該研究探索瞭高光譜圖像土地鹽漬化信息的提取技術方法,提供瞭不同鹽漬化土地的分佈比例數據,可為黃河三角洲濱海鹽堿土地資源的科學利用與管理提供決策依據。
선택황하삼각주은리현대표성염감화구역위연구구,이2011년3월15일HJ-1A위성 HSI고광보영상화2011년3월22일T M영상위신식원,경궤하규정、도상재전、대기교정등예처리,분석불동염지화정도토지、수체、탄도등주요지류적광보특정,학정지류신식제취특정파단。결합토양염분함량,채용정량여정성상결합규칙,구건지류신식제취모형,이결책수분류방법진행도상분류,제취토지염지화신식。이용지표점위토양함염량수거대지표토지염지화정도적화학분석결과,대요감해역수거진행정도험증,병대고광보화다광보영상적분류정도진행비교분석。결과표명:HSI도상적총체분류정도체96.43%,Kappa계수위95.59%,이T M도상적총체분류정도위89.17%,Kappa계수위86.74%,설명상비다광보T M수거,기우고광보도상가이경위준학유효지제취토지염지화신식;유분류결과도가이간출,고광보영상토지염지화적구분도고우다광보영상。해연구탐색료고광보도상토지염지화신식적제취기술방법,제공료불동염지화토지적분포비례수거,가위황하삼각주빈해염감토지자원적과학이용여관리제공결책의거。
This paper chose the typical salinization area in Kenli County of the Yellow River Delta as the study area ,selected HJ-1A satellite HSI image at March 15 ,2011 and TM image at March 22 ,2011 as source of information ,and pre-processed these data by image cropping ,geometric correction and atmospheric correction .Spectral characteristics of main land use types inclu-ding different degree of salinization lands ,water and shoals were analyzed to find distinct bands for information extraction .Land use information extraction model was built by adopting the quantitative and qualitative rules combining the spectral characteristics and the content of soil salinity .Land salinization information was extracted via image classification using decision tree method . The remote sensing image interpretation accuracy was verified by land salinization degree ,which was determined through soil sa-linity chemical analysis of soil sampling points .In addition ,classification accuracy between the hyperspectral and multi-spectral images were analyzed and compared .The results showed that the overall image classification accuracy of HSI was 96.43% ,Kap-pa coefficient was 95.59% ;while the overall image classification accuracy of TM was 89.17% ,Kappa coefficient was 86.74% . Therefore ,compared to multi-spectral TM data ,the hyperspectral imagery could be more accurate and efficient for land saliniza-tion information extraction .Also ,the classification map showed that the soil salinity distinction degree of hyperspectral image was higher than that of multi-spectral image .This study explored the land salinization information extraction techniques from hy-perspectral imagery ,extracted the spatial distribution and area ratio information of different degree of salinization land ,and pro-vided decision-making basis for the scientific utilization and management of coastal salinization land resources in the Yellow River Delta .