农机化研究
農機化研究
농궤화연구
JOURNAL OF AGRICULTURAL MECHANIZATION RESEARCH
2014年
1期
73-75
,共3页
图像处理%模式识别%支持向量机%黄瓜病害%颜色特征
圖像處理%模式識彆%支持嚮量機%黃瓜病害%顏色特徵
도상처리%모식식별%지지향량궤%황과병해%안색특정
image processing%pattern recognition%support vector machine%cucumber disease%color features
针对黄瓜常见叶部病斑图像的颜色特点,提出了将支持向量机( Support Vector Machine , SVM )应用于黄瓜叶部病害识别中。首先,选择HSI 颜色系统作为图像特征提取的颜色空间,以减少光照强度对获取图像时的影响;然后,利用支持向量机进行叶部病害的识别。不同核函数的结果比较分析表明:径向基核函数对黄瓜叶部病害的识别率最高,最适于黄瓜霜霉病、角斑病和白粉病的分类识别;支持向量机识别方法在病害识别时训练样本少,具有很好的分类性能和泛化能力。
針對黃瓜常見葉部病斑圖像的顏色特點,提齣瞭將支持嚮量機( Support Vector Machine , SVM )應用于黃瓜葉部病害識彆中。首先,選擇HSI 顏色繫統作為圖像特徵提取的顏色空間,以減少光照彊度對穫取圖像時的影響;然後,利用支持嚮量機進行葉部病害的識彆。不同覈函數的結果比較分析錶明:徑嚮基覈函數對黃瓜葉部病害的識彆率最高,最適于黃瓜霜黴病、角斑病和白粉病的分類識彆;支持嚮量機識彆方法在病害識彆時訓練樣本少,具有很好的分類性能和汎化能力。
침대황과상견협부병반도상적안색특점,제출료장지지향량궤( Support Vector Machine , SVM )응용우황과협부병해식별중。수선,선택HSI 안색계통작위도상특정제취적안색공간,이감소광조강도대획취도상시적영향;연후,이용지지향량궤진행협부병해적식별。불동핵함수적결과비교분석표명:경향기핵함수대황과협부병해적식별솔최고,최괄우황과상매병、각반병화백분병적분류식별;지지향량궤식별방법재병해식별시훈련양본소,구유흔호적분류성능화범화능력。
According to the color characteristics of cucumber common leaf disease image , it put Support Vector Machine ( SVM) forward for the recognition of cucumber leaf disease in this paper .First, it selected HSI color system as the color space for the image feature extraction in order to reduce the impact of light intensity for obtaining images ;Then , the pa-per used Support Vector Machine for the recognition of leaf disease .The experimental results show that: the results of comparative analysis of different kernel function demonstrated RBF kernel function get the highest recognition rate of cu -cumber leaf disease and is most suitable for the recognition of cucumber three kinds of disease .The classification method of SVM has good classification performance and generalization ability with a small sample of training in disease recogni -tion.