光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
3期
638-642
,共5页
徐冰%王星%Dhaene Tom%史新元%Couckuyt Ivo%白雁%乔延江
徐冰%王星%Dhaene Tom%史新元%Couckuyt Ivo%白雁%喬延江
서빙%왕성%Dhaene Tom%사신원%Couckuyt Ivo%백안%교연강
多目标最小二乘支持向量机%遗传算法%近红外%多组分定量%自适应建模
多目標最小二乘支持嚮量機%遺傳算法%近紅外%多組分定量%自適應建模
다목표최소이승지지향량궤%유전산법%근홍외%다조분정량%자괄응건모
Multi-objective least square support vector machine%Genetic algorithm%Near infrared%Multicomponent quantifica-tion%Adaptive modeling
近红外(NIR)定量分析通常涉及多个组分,采用遗传算法和自适应建模策略,建立了能够对多组分同时定量的多目标最小二乘支持向量机(LS-SVM ),并将其应用于玉米中四个组分和连翘中两个活性成分的NIR分析。结果表明多目标遗传算法配合自适应建模策略可保证优化收敛于全局最优解。所建玉米多目标LS-SVM模型明显优于PLS1和PLS2模型;连翘多目标LS-SVM 模型与PLS模型均可取得较好的校正和预测效果。两组数据中,径向基神经网络(RBFNN )模型均出现过拟合现象。多目标 LS-SVM 和单目标LS-SVM性能相近,但多目标LS-SVM建模运行一次即可得到结果,在NIR多组分定量分析中具有潜在应用优势。
近紅外(NIR)定量分析通常涉及多箇組分,採用遺傳算法和自適應建模策略,建立瞭能夠對多組分同時定量的多目標最小二乘支持嚮量機(LS-SVM ),併將其應用于玉米中四箇組分和連翹中兩箇活性成分的NIR分析。結果錶明多目標遺傳算法配閤自適應建模策略可保證優化收斂于全跼最優解。所建玉米多目標LS-SVM模型明顯優于PLS1和PLS2模型;連翹多目標LS-SVM 模型與PLS模型均可取得較好的校正和預測效果。兩組數據中,徑嚮基神經網絡(RBFNN )模型均齣現過擬閤現象。多目標 LS-SVM 和單目標LS-SVM性能相近,但多目標LS-SVM建模運行一次即可得到結果,在NIR多組分定量分析中具有潛在應用優勢。
근홍외(NIR)정량분석통상섭급다개조분,채용유전산법화자괄응건모책략,건립료능구대다조분동시정량적다목표최소이승지지향량궤(LS-SVM ),병장기응용우옥미중사개조분화련교중량개활성성분적NIR분석。결과표명다목표유전산법배합자괄응건모책략가보증우화수렴우전국최우해。소건옥미다목표LS-SVM모형명현우우PLS1화PLS2모형;련교다목표LS-SVM 모형여PLS모형균가취득교호적교정화예측효과。량조수거중,경향기신경망락(RBFNN )모형균출현과의합현상。다목표 LS-SVM 화단목표LS-SVM성능상근,단다목표LS-SVM건모운행일차즉가득도결과,재NIR다조분정량분석중구유잠재응용우세。
The near infrared (NIR) spectrum contains a global signature of composition ,and enables to predict different proper-ties of the material .In the present paper ,a genetic algorithm and an adaptive modeling technique were applied to build a multi-objective least square support vector machine (MLS-SVM ) ,which was intended to simultaneously determine the concentrations of multiple components by NIR spectroscopy .Both the benchmark corn dataset and self-made Forsythia suspense dataset were used to test the proposed approach .Results show that a genetic algorithm combined with adaptive modeling allows to efficiently search the LS-SVM hyperparameter space .For the corn data ,the performance of multi-objective LS-SVM was significantly bet-ter than models built with PLS1 and PLS2 algorithms .As for the Forsythia suspense data ,the performance of multi-objective LS-SVM was equivalent to PLS1 and PLS2 models .In both datasets ,the over-fitting phenomena were observed on RBFNN models .The single objective LS-SVM and MLS-SVM didn’t show much difference ,but the one-time modeling convenience al-lows the potential application of MLS-SVM to multicomponent NIR analysis .