光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
3期
634-637
,共4页
李建蕊%陈建波%周群%孙素琴%吕光华
李建蕊%陳建波%週群%孫素琴%呂光華
리건예%진건파%주군%손소금%려광화
三七%剪口%主根%绒根%红外光谱
三七%剪口%主根%絨根%紅外光譜
삼칠%전구%주근%융근%홍외광보
Panax Notoginseng%Rhizome%Main root%Fibrous root%Infrared spectroscopy
采用溴化钾压片法及傅里叶变换红外光谱技术对中药三七(Panax notoginseng)的剪口、主根、筋条、绒根等不同部位以及表皮、韧皮部、形成层和木部等不同组织的红外光谱及其二阶导数谱进行了研究。三七不同部位及组织红外光谱的整体峰形相似;在3400,2930,1645,1155,1080和1020 cm-1附近有淀粉的特征吸收峰,其主体成分均为淀粉。但各部位和组织的红外光谱及其特征性化学成分有差异。剪口在1077和1152 cm-1处峰的强度比大于其他部位,皂苷的含量最高。剪口及其表皮在1317和780 cm -1特征峰明显,含草酸钙;并且剪口表皮中草酸钙的含量比剪口中的含量高。绒根在1384和825 cm -1处有硝酸盐的特征峰,说明绒根富含硝酸盐类成分。主根表皮在2926,2854和1740 cm -1处的吸收峰较强,酯类成分的含量较高。形成层的红外光谱中酰胺Ⅰ带和酰胺Ⅱ带峰明显,富含蛋白质。由此可见,三七不同部位和组织的红外光谱及其二阶导数谱各有特征,不仅揭示了整体化学成分,还能提供有机大分子、无机小分子等特征性成分信息。红外光谱可用于三七及其不同部位和组织的准确、快速鉴别及质量评价。
採用溴化鉀壓片法及傅裏葉變換紅外光譜技術對中藥三七(Panax notoginseng)的剪口、主根、觔條、絨根等不同部位以及錶皮、韌皮部、形成層和木部等不同組織的紅外光譜及其二階導數譜進行瞭研究。三七不同部位及組織紅外光譜的整體峰形相似;在3400,2930,1645,1155,1080和1020 cm-1附近有澱粉的特徵吸收峰,其主體成分均為澱粉。但各部位和組織的紅外光譜及其特徵性化學成分有差異。剪口在1077和1152 cm-1處峰的彊度比大于其他部位,皂苷的含量最高。剪口及其錶皮在1317和780 cm -1特徵峰明顯,含草痠鈣;併且剪口錶皮中草痠鈣的含量比剪口中的含量高。絨根在1384和825 cm -1處有硝痠鹽的特徵峰,說明絨根富含硝痠鹽類成分。主根錶皮在2926,2854和1740 cm -1處的吸收峰較彊,酯類成分的含量較高。形成層的紅外光譜中酰胺Ⅰ帶和酰胺Ⅱ帶峰明顯,富含蛋白質。由此可見,三七不同部位和組織的紅外光譜及其二階導數譜各有特徵,不僅揭示瞭整體化學成分,還能提供有機大分子、無機小分子等特徵性成分信息。紅外光譜可用于三七及其不同部位和組織的準確、快速鑒彆及質量評價。
채용추화갑압편법급부리협변환홍외광보기술대중약삼칠(Panax notoginseng)적전구、주근、근조、융근등불동부위이급표피、인피부、형성층화목부등불동조직적홍외광보급기이계도수보진행료연구。삼칠불동부위급조직홍외광보적정체봉형상사;재3400,2930,1645,1155,1080화1020 cm-1부근유정분적특정흡수봉,기주체성분균위정분。단각부위화조직적홍외광보급기특정성화학성분유차이。전구재1077화1152 cm-1처봉적강도비대우기타부위,조감적함량최고。전구급기표피재1317화780 cm -1특정봉명현,함초산개;병차전구표피중초산개적함량비전구중적함량고。융근재1384화825 cm -1처유초산염적특정봉,설명융근부함초산염류성분。주근표피재2926,2854화1740 cm -1처적흡수봉교강,지류성분적함량교고。형성층적홍외광보중선알Ⅰ대화선알Ⅱ대봉명현,부함단백질。유차가견,삼칠불동부위화조직적홍외광보급기이계도수보각유특정,불부게시료정체화학성분,환능제공유궤대분자、무궤소분자등특정성성분신식。홍외광보가용우삼칠급기불동부위화조직적준학、쾌속감별급질량평개。
The techniques of Fourier transform infrared (FTIR) spectroscopy were applied to analyze the different parts and tis-sues of Panax Notoginseng (Sanqi ,SQ) ,i .e .rhizome ,main root ,rootlet ,fibrous root ,xylem ,cambium ,phloem and epider-mis .Both the FTIR spectra and second derivative spectra of these various parts and tissues of SQ samples were found to be simi-lar .Their dominant component is starch resulting from the characteristic peaks of starch observed at 3 400 ,2 930 ,1 645 , 1 155 ,1 080 and 1 020 cm -1 on the spectra of all these SQ samples .However ,the varieties of peaks were found on the spectra among these specific samples .The rhizome contains more saponins than others on the basis of the largest ratio of the peak inten-sity at 1 077 cm -1 to that at 1 152 cm -1 .The peaks located at 1 317 and 780 cm -1 on the FTIR spectra of the rhizome and its ep-idermis indicate that the two parts of SQ samples contain large amount of calcium oxalate ,and its content in the latter is relative larger than that in former .The fibrous root contains much amount of nitrate owing to the obvious characteristic peaks at 1 384 and 831 cm -1 .For the difference among the various tissues of SQ samples ,the peaks at 2 926 ,2 854 and 1 740 cm-1 on the FT-IR spectra of epidermis is the strongest among the various tissues of main root indicating the largest amount of esters in epider-mis .Protein was also found in the cambium of the main root based on the relative strong peaks of amide Ⅰ and Ⅱ band at 1 641 and 1 541 cm -1 ,respectively .The results indicate that FTIR spectra with its second derivative spectra can show the characteris-tic of the various parts and tissues of SQ samples in both the holistic chemical constituents and specific chemical components ,in-cluding organic macromolecule compounds and small inorganic molecule compounds .FTIR spectroscopy is a useful analytical method for the genuine and rapid identification and quality assessment of SQ samples .