电子设计工程
電子設計工程
전자설계공정
ELECTRONIC DESIGN ENGINEERING
2014年
18期
176-179,182
,共5页
蝴蝶兰%主动轮廓%骨架算法%轮廓重生算法%花朵提取
蝴蝶蘭%主動輪廓%骨架算法%輪廓重生算法%花朵提取
호접란%주동륜곽%골가산법%륜곽중생산법%화타제취
phalaenopsis amabilis%active contour%skeleton extraction algorithm%contour repossession algorithm%flower object extraction
采用改进的主动轮廓模型算法,实现从蝴蝶兰花簇图像中提取单个花朵图像,为自动识别蝴蝶兰的生长状态奠定基础。首先利用改进的骨架算法和轮廓重生算法,生成蝴蝶兰花簇的初始轮廓;然后利用含有形状能量的主动轮廓模型进行轮廓的演化,使其更接近真实的蝴蝶兰花簇边缘,最后根据蝴蝶兰花蕊位置获得相应的蝴蝶兰花朵。实例验证和比对实验结果表明,该模型能够较好的分割和提取蝴蝶兰花簇中单个花朵,并具有较强的抗噪能力。利用该方法,可以较好的提取蝴蝶兰花簇中的单个花朵,与人工提取效果进行比对,正确率达到了91.5%。
採用改進的主動輪廓模型算法,實現從蝴蝶蘭花簇圖像中提取單箇花朵圖像,為自動識彆蝴蝶蘭的生長狀態奠定基礎。首先利用改進的骨架算法和輪廓重生算法,生成蝴蝶蘭花簇的初始輪廓;然後利用含有形狀能量的主動輪廓模型進行輪廓的縯化,使其更接近真實的蝴蝶蘭花簇邊緣,最後根據蝴蝶蘭花蕊位置穫得相應的蝴蝶蘭花朵。實例驗證和比對實驗結果錶明,該模型能夠較好的分割和提取蝴蝶蘭花簇中單箇花朵,併具有較彊的抗譟能力。利用該方法,可以較好的提取蝴蝶蘭花簇中的單箇花朵,與人工提取效果進行比對,正確率達到瞭91.5%。
채용개진적주동륜곽모형산법,실현종호접란화족도상중제취단개화타도상,위자동식별호접란적생장상태전정기출。수선이용개진적골가산법화륜곽중생산법,생성호접란화족적초시륜곽;연후이용함유형상능량적주동륜곽모형진행륜곽적연화,사기경접근진실적호접란화족변연,최후근거호접란화예위치획득상응적호접란화타。실례험증화비대실험결과표명,해모형능구교호적분할화제취호접란화족중단개화타,병구유교강적항조능력。이용해방법,가이교호적제취호접란화족중적단개화타,여인공제취효과진행비대,정학솔체도료91.5%。
Improved active contour method is used to extract single flower object from phalaenopsis amabilis cluster, which lays good foundation to identify the growth state of phalaenopsis amabilis automatically. It firstly uses the improved skeleton algorithm and contour repossession algorithm to create preliminary contour, and then makes contour evolution by active contour model with shape energy to make it close to real object edge. Finally, the corresponding flower will be obtained according to the position of pistil/stamen. Both the instance validation and the comparison experiment prove the model can segment and extract single flower object from phalaenopsis amabilis cluster very well, with good anti-noise capacity. The algorithm model put forward in the article can extract single flower object from phalaenopsis amabilis cluster with a accuracy rate as high as 91.5%, compared with artificial extraction method.