华南师范大学学报(自然科学版)
華南師範大學學報(自然科學版)
화남사범대학학보(자연과학판)
JOURNAL OF SOUTH CHINA NORMAL UNIVERSITY (NATURAL SCIENCE EDITION)
2013年
5期
93-97
,共5页
黄少峰%刘威%王旭涛%黄迎艳
黃少峰%劉威%王旭濤%黃迎豔
황소봉%류위%왕욱도%황영염
高原湖泊%富营养化%叶绿素a%神经网络%营养削减
高原湖泊%富營養化%葉綠素a%神經網絡%營養削減
고원호박%부영양화%협록소a%신경망락%영양삭감
plateau lake%eutrophication%chlorophyll a%neural network%nutrient reduction
以星云湖为研究对象,通过多年水生态监测数据筛选出富营养化的关键因子,利用BP神经网络模拟叶绿素a与各因子之间的关系,定量分析了叶绿素a的压力响应情况,结果表明:CODMn、TP、TN是富营养化进程中3个关键因子;以0.02 mg/L为富营养化湖泊中叶绿素a的控制目标,需分别削减61%的CODMn或77%的TP或20%的TN.模拟结果显示,星云湖的藻类生长以氮为限制因子.基于神经网络模拟分析星云湖的富营养化进程,为星云湖水污染控制提供重要的决策依据.
以星雲湖為研究對象,通過多年水生態鑑測數據篩選齣富營養化的關鍵因子,利用BP神經網絡模擬葉綠素a與各因子之間的關繫,定量分析瞭葉綠素a的壓力響應情況,結果錶明:CODMn、TP、TN是富營養化進程中3箇關鍵因子;以0.02 mg/L為富營養化湖泊中葉綠素a的控製目標,需分彆削減61%的CODMn或77%的TP或20%的TN.模擬結果顯示,星雲湖的藻類生長以氮為限製因子.基于神經網絡模擬分析星雲湖的富營養化進程,為星雲湖水汙染控製提供重要的決策依據.
이성운호위연구대상,통과다년수생태감측수거사선출부영양화적관건인자,이용BP신경망락모의협록소a여각인자지간적관계,정량분석료협록소a적압력향응정황,결과표명:CODMn、TP、TN시부영양화진정중3개관건인자;이0.02 mg/L위부영양화호박중협록소a적공제목표,수분별삭감61%적CODMn혹77%적TP혹20%적TN.모의결과현시,성운호적조류생장이담위한제인자.기우신경망락모의분석성운호적부영양화진정,위성운호수오염공제제공중요적결책의거.
Lake Xingyun was selected as a study object .The key factors of the eutrophication were screened out using PCA, and back-propagate neural network was used to simulate the relation between chlorophyll a and key fac -tors, and the pressure-response effect between chlorophyll a and key factors was quantitatively analyzed .The con-clusions are:CODMn , TP and TN were the key factors of the eutrophication .Set 0.02 mg/L as the control target of chlorophyll a, then 61%of CODMn or 77% of TP or 20%of TN should be reduced .This result indicated that N was the limiting factor of the phytoplankton in Lake Xingyun .This simulation of eutrophication provided the basic data for the remediation of Lake Xingyun .