华南师范大学学报(自然科学版)
華南師範大學學報(自然科學版)
화남사범대학학보(자연과학판)
JOURNAL OF SOUTH CHINA NORMAL UNIVERSITY (NATURAL SCIENCE EDITION)
2013年
6期
105-112
,共8页
非线性光学%氢键%协同作用%(C9H8N6O2)n(n=1,2,3,4)
非線性光學%氫鍵%協同作用%(C9H8N6O2)n(n=1,2,3,4)
비선성광학%경건%협동작용%(C9H8N6O2)n(n=1,2,3,4)
NLO%hydrogen bond%cooperativity%(C9H8N6O2)n(n=1,2,3,4)
该文研究了(C9H8N6O2)n(n=1,2,3,4)分子体系的非线性光学性质,采用Hartree-Fock方法、密度泛函方法以及M?ller-Plesset微扰理论方法在6-31G**基组下分别计算了该体系的静电场超极化率.其几何结构在B3LYP/6-31G**条件下进行了优化,发现它们有3种不同的氢键形式,其键长分别为0.1963,0.1918,0.1909 nm.在HF/6-31G**水平下,发现一级超极化率(β0)的增长是由于随着n的增大,体系的氢键数目增加造成的,当n=1,2,3,4时,它们β0的值分别为246,596,1067,1555(原子单位),当n=1,2,3,4时,它们的二级超极化率(γ0)的值分别为1.4,4.3,7.8,11.5(104原子单位).结果显示随着n的增大,体系氢键数目的增加、相互作用的增强,Δγ也随着增大,在n=2,3,4时分别为14768,35627,58670(原子单位).该研究显示氢键是设计非线性光学材料的关键因素.
該文研究瞭(C9H8N6O2)n(n=1,2,3,4)分子體繫的非線性光學性質,採用Hartree-Fock方法、密度汎函方法以及M?ller-Plesset微擾理論方法在6-31G**基組下分彆計算瞭該體繫的靜電場超極化率.其幾何結構在B3LYP/6-31G**條件下進行瞭優化,髮現它們有3種不同的氫鍵形式,其鍵長分彆為0.1963,0.1918,0.1909 nm.在HF/6-31G**水平下,髮現一級超極化率(β0)的增長是由于隨著n的增大,體繫的氫鍵數目增加造成的,噹n=1,2,3,4時,它們β0的值分彆為246,596,1067,1555(原子單位),噹n=1,2,3,4時,它們的二級超極化率(γ0)的值分彆為1.4,4.3,7.8,11.5(104原子單位).結果顯示隨著n的增大,體繫氫鍵數目的增加、相互作用的增彊,Δγ也隨著增大,在n=2,3,4時分彆為14768,35627,58670(原子單位).該研究顯示氫鍵是設計非線性光學材料的關鍵因素.
해문연구료(C9H8N6O2)n(n=1,2,3,4)분자체계적비선성광학성질,채용Hartree-Fock방법、밀도범함방법이급M?ller-Plesset미우이론방법재6-31G**기조하분별계산료해체계적정전장초겁화솔.기궤하결구재B3LYP/6-31G**조건하진행료우화,발현타문유3충불동적경건형식,기건장분별위0.1963,0.1918,0.1909 nm.재HF/6-31G**수평하,발현일급초겁화솔(β0)적증장시유우수착n적증대,체계적경건수목증가조성적,당n=1,2,3,4시,타문β0적치분별위246,596,1067,1555(원자단위),당n=1,2,3,4시,타문적이급초겁화솔(γ0)적치분별위1.4,4.3,7.8,11.5(104원자단위).결과현시수착n적증대,체계경건수목적증가、상호작용적증강,Δγ야수착증대,재n=2,3,4시분별위14768,35627,58670(원자단위).해연구현시경건시설계비선성광학재료적관건인소.
The nonlinear optical (NLO) properties of (C9H8N6O2)n(n=1,2,3,4) have been investigated.The static (hyper)polarizabilities of the systems are evaluated by methods of the Hartree-Fock (HF), Density Functional Theory (DFT), and M?ller-Plesset perturbation theory at the second order (MP2) with 6-31G**basis set.The structures are opti-mized at B3LYP/6-31G** level.There are three types of hydrogen bonds , N-H?O-C-C, N?H-N, and N-H?O-C-N, and their lengths are in average 0.196 3, 0.191 8 and 0.190 9 nm, respectively.At the HF/6-31G** level, the first hyperpolarizability (β0 ) is increased due to more and more hydrogen bond interactions involved as n is increased , i.e.β0 is 246, 596, 1 067, or 1 555 ( a.u.) for n=1, 2, 3, or 4, respectively.The static second hyperpolarizability (γ0) is 1.4, 4.3, 7.8, or 11.5 (in 104 a.u.), respectively, for n=1, 2, 3, or 4.The results show that Δγfor n=2, 3 or 4 is 14 768, 35 627 or 58 670 a.u., which keeps increasing due to the interaction of more hydrogen bonds as n grows. Since Δγhas an obvious increase , it is attributed to the cooperativity of hydrogen bonds .The investigation shows that hy-drogen bond is an effective factor to design new NLO materials .