红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2013年
10期
2636-2641
,共6页
闵超波%张俊举%常本康%孙斌%李英杰
閔超波%張俊舉%常本康%孫斌%李英傑
민초파%장준거%상본강%손빈%리영걸
时空域分割%图像分割%性能评价%红外视频
時空域分割%圖像分割%性能評價%紅外視頻
시공역분할%도상분할%성능평개%홍외시빈
spatiotemporal segmentation%image segmentation%performance evaluation%infrared video
为了在红外视频中准确分割运动目标,提出了一种基于边界评价的红外运动目标时空域分割的新方法。首先,利用运动目标在时域差分图像中的“空洞”效应,提取出最有意义运动目标种子点。重点是运动目标的空间分割,利用种子区域整体与局部的关系,在提取出的种子上进行区域生长,可以得到不同生长阈值下的运动目标分割掩膜。为确定最佳生长阈值,提出了一种无需先验知识的红外目标分割掩膜边界评价准则,并采用“分割-评价-再分割-再评价”的循环迭代模式,利用“由粗到精”的搜索方法,找出最佳的生长阈值,同时得到最佳的运动目标分割掩膜。实验证明,所提出的方法能在红外视频中准确分割出运动目标区域,效果良好,性能鲁棒。
為瞭在紅外視頻中準確分割運動目標,提齣瞭一種基于邊界評價的紅外運動目標時空域分割的新方法。首先,利用運動目標在時域差分圖像中的“空洞”效應,提取齣最有意義運動目標種子點。重點是運動目標的空間分割,利用種子區域整體與跼部的關繫,在提取齣的種子上進行區域生長,可以得到不同生長閾值下的運動目標分割掩膜。為確定最佳生長閾值,提齣瞭一種無需先驗知識的紅外目標分割掩膜邊界評價準則,併採用“分割-評價-再分割-再評價”的循環迭代模式,利用“由粗到精”的搜索方法,找齣最佳的生長閾值,同時得到最佳的運動目標分割掩膜。實驗證明,所提齣的方法能在紅外視頻中準確分割齣運動目標區域,效果良好,性能魯棒。
위료재홍외시빈중준학분할운동목표,제출료일충기우변계평개적홍외운동목표시공역분할적신방법。수선,이용운동목표재시역차분도상중적“공동”효응,제취출최유의의운동목표충자점。중점시운동목표적공간분할,이용충자구역정체여국부적관계,재제취출적충자상진행구역생장,가이득도불동생장역치하적운동목표분할엄막。위학정최가생장역치,제출료일충무수선험지식적홍외목표분할엄막변계평개준칙,병채용“분할-평개-재분할-재평개”적순배질대모식,이용“유조도정”적수색방법,조출최가적생장역치,동시득도최가적운동목표분할엄막。실험증명,소제출적방법능재홍외시빈중준학분할출운동목표구역,효과량호,성능로봉。
In this paper, a new method was presented for spatiotemporal segmentation of moving-object using boundary evaluation in infrared video. At first, the ideal seeds of every moving object were extracted based on the "holes" effect of temporal difference, respectively. The wok focus was spatial segmentation. On the basis of the relationship between the global and local standard deviation of seeds, the segmented masks could be grown form the ideal seeds by using different growing thresholds. For determination of the best growing threshold, a criterion was constructed for evaluating the boundary of the segmented mask of infrared moving-object without prior knowledge. According to the proposed criterion, an iterative model which was "segmentation-evaluation-segmentation-evaluation" and the search method called as "coarse to fine" were applied to find the best growing threshold. Meanwhile the best segmented mask was obtained too. The experiment results show that the proposed method is superior and effective on segmentation of moving object in infrared video.