砖瓦
磚瓦
전와
2013年
11期
5-8
,共4页
彭龙贵%杨晓凤%田进%韩瑾%王知%张再勇
彭龍貴%楊曉鳳%田進%韓瑾%王知%張再勇
팽룡귀%양효봉%전진%한근%왕지%장재용
石膏%聚甲基丙烯酰亚胺%吸声%纤维
石膏%聚甲基丙烯酰亞胺%吸聲%纖維
석고%취갑기병희선아알%흡성%섬유
gypsum%polymethacrylimide%sound absorption%crystalline fibers
以普通石膏为基体,聚甲基丙烯酰亚胺(PMI)泡沫为填料复合制备半互穿高频吸声材料。考察了水灰比、制孔剂掺入量和聚甲基丙烯酰亚胺(PMI)掺入量等因素对复合材料吸声性能的影响;采用驻波管、Micromeritics ASAP 2020仪器对样品的吸声系数、比表面积、孔容和孔径进行测试和表征;采用SEM观测了样品孔结构。实验结果表明:当水灰比为0.60,制孔剂0.04%,聚甲基丙烯酰亚胺(PMI)掺入量为6%时材料高频平均吸声系数为0.57,SEM显示吸声材料中石膏结晶自编织形成半互穿纤维多孔结构,孔隙分布均匀,孔型规整,其比表面积为26.0750 m3/g,孔容为0.971835221 m3/g,孔径为118.3581?。
以普通石膏為基體,聚甲基丙烯酰亞胺(PMI)泡沫為填料複閤製備半互穿高頻吸聲材料。攷察瞭水灰比、製孔劑摻入量和聚甲基丙烯酰亞胺(PMI)摻入量等因素對複閤材料吸聲性能的影響;採用駐波管、Micromeritics ASAP 2020儀器對樣品的吸聲繫數、比錶麵積、孔容和孔徑進行測試和錶徵;採用SEM觀測瞭樣品孔結構。實驗結果錶明:噹水灰比為0.60,製孔劑0.04%,聚甲基丙烯酰亞胺(PMI)摻入量為6%時材料高頻平均吸聲繫數為0.57,SEM顯示吸聲材料中石膏結晶自編織形成半互穿纖維多孔結構,孔隙分佈均勻,孔型規整,其比錶麵積為26.0750 m3/g,孔容為0.971835221 m3/g,孔徑為118.3581?。
이보통석고위기체,취갑기병희선아알(PMI)포말위전료복합제비반호천고빈흡성재료。고찰료수회비、제공제참입량화취갑기병희선아알(PMI)참입량등인소대복합재료흡성성능적영향;채용주파관、Micromeritics ASAP 2020의기대양품적흡성계수、비표면적、공용화공경진행측시화표정;채용SEM관측료양품공결구。실험결과표명:당수회비위0.60,제공제0.04%,취갑기병희선아알(PMI)참입량위6%시재료고빈평균흡성계수위0.57,SEM현시흡성재료중석고결정자편직형성반호천섬유다공결구,공극분포균균,공형규정,기비표면적위26.0750 m3/g,공용위0.971835221 m3/g,공경위118.3581?。
In this experiment, the high-frequency sound-absorbing material is based on the ordinary plaster, filled with the PMI foam. The experiment elucidates the factors of the water-cement ratio, sodium carbonate, and the incorporation of hydrochloric acid and PMI etc.on the absorption properties of composite materials. The wave tube and the Micromeritics ASAP 2020 are used to test and characterize the absorption coefficient, surface area, pore volume and pore diameter of the samples. The samples of the pore structure are observed by the JSM6460LV electron scanning microscope. The relationship between the configuration and the properties of the materials is discussed.