河南科学
河南科學
하남과학
HENAN SCIENCE
2013年
11期
1842-1845
,共4页
递归序列%收敛%极限%初始值
遞歸序列%收斂%極限%初始值
체귀서렬%수렴%겁한%초시치
recurrent sequences%convergence%limit%initial value
对形如Fn+2=a1(n)F !b1n+1+a2(n)F !b2n ,n≥1的变系数非线性递归序列{Fn}的极限问题进行了研究,给出了在满足一定条件时,序列{Fn}收敛且极限值与初始值F1>0,F2>0无关。
對形如Fn+2=a1(n)F !b1n+1+a2(n)F !b2n ,n≥1的變繫數非線性遞歸序列{Fn}的極限問題進行瞭研究,給齣瞭在滿足一定條件時,序列{Fn}收斂且極限值與初始值F1>0,F2>0無關。
대형여Fn+2=a1(n)F !b1n+1+a2(n)F !b2n ,n≥1적변계수비선성체귀서렬{Fn}적겁한문제진행료연구,급출료재만족일정조건시,서렬{Fn}수렴차겁한치여초시치F1>0,F2>0무관。
In this paper,we study the limit of a kind of nonlinear recurrent sequences Fn+2=a1(n)F ! n≥1. We prove that,under a certain conditions,the sequence of{Fn}is convergenct,and its limit value does not depend on the initial value F1 or F2 .