水产科学
水產科學
수산과학
FISHERIES SCIENCE
2013年
12期
721-729
,共9页
孟学平%申欣%赵娜娜%田美%郑立波%程汉良%阎斌伦%董志国
孟學平%申訢%趙娜娜%田美%鄭立波%程漢良%閻斌倫%董誌國
맹학평%신흔%조나나%전미%정립파%정한량%염빈륜%동지국
双壳类%线粒体基因组%基因组结构
雙殼類%線粒體基因組%基因組結構
쌍각류%선립체기인조%기인조결구
bivalves%mitochondrial genome%genomic structure
自GenBank检索到双壳类线粒体基因组,对其进行基因结构比较分析,以揭示线粒体基因组的演化规律,为线粒体基因组在物种演化和鉴定上的应用研究提供资料。结果共获得45个物种线粒体基因组序列,分布于双壳类5个目中。多数种类线粒体基因组大小为15~32 kb。平均 A+ T =62.9%。多数种类基因分布在重链上,而蚌目的基因分布在2条链上;少数种类(蚌目13个、帘蛤目的2个、贻贝目的1个、海螂目的1个,巨蛎属的贝类)的线粒体基因组含有13种蛋白质基因,其余种类为12种,缺少atp8;文蛤属4个种类、巨蛎属中4个种类、蚌目的11个种类、贻贝属中的紫贻贝和地中海贻贝的PCGs、rRNA基因排序在同属内或科内相同;珍珠贝目牡蛎科的10个种类线粒体基因组可分为7种类型;扇贝科海湾扇贝2个线粒体基因组基因结构相似外,其余种类无共享基因块;贻贝科的紫贻贝和海湾贻贝基因结构极相似。绿贻贝的结构独特,co x 2为双拷贝;海螂目的北方钻岩蛤基因结构与其它目的相似性极低。多数双壳类线粒体基因组非编码区占7.64%~40.26%,主非编码区大小为374~4341 nt。基于12种PCGs核苷酸/氨基酸的属内种间最小分歧度分别为0.2~1.0/0~1.0(文蛤属)、0.4~2.0/0~3.2(贻贝属)和1.9~13.9/0~6.4(巨蛎属)。
自GenBank檢索到雙殼類線粒體基因組,對其進行基因結構比較分析,以揭示線粒體基因組的縯化規律,為線粒體基因組在物種縯化和鑒定上的應用研究提供資料。結果共穫得45箇物種線粒體基因組序列,分佈于雙殼類5箇目中。多數種類線粒體基因組大小為15~32 kb。平均 A+ T =62.9%。多數種類基因分佈在重鏈上,而蚌目的基因分佈在2條鏈上;少數種類(蚌目13箇、簾蛤目的2箇、貽貝目的1箇、海螂目的1箇,巨蠣屬的貝類)的線粒體基因組含有13種蛋白質基因,其餘種類為12種,缺少atp8;文蛤屬4箇種類、巨蠣屬中4箇種類、蚌目的11箇種類、貽貝屬中的紫貽貝和地中海貽貝的PCGs、rRNA基因排序在同屬內或科內相同;珍珠貝目牡蠣科的10箇種類線粒體基因組可分為7種類型;扇貝科海灣扇貝2箇線粒體基因組基因結構相似外,其餘種類無共享基因塊;貽貝科的紫貽貝和海灣貽貝基因結構極相似。綠貽貝的結構獨特,co x 2為雙拷貝;海螂目的北方鑽巖蛤基因結構與其它目的相似性極低。多數雙殼類線粒體基因組非編碼區佔7.64%~40.26%,主非編碼區大小為374~4341 nt。基于12種PCGs覈苷痠/氨基痠的屬內種間最小分歧度分彆為0.2~1.0/0~1.0(文蛤屬)、0.4~2.0/0~3.2(貽貝屬)和1.9~13.9/0~6.4(巨蠣屬)。
자GenBank검색도쌍각류선립체기인조,대기진행기인결구비교분석,이게시선립체기인조적연화규률,위선립체기인조재물충연화화감정상적응용연구제공자료。결과공획득45개물충선립체기인조서렬,분포우쌍각류5개목중。다수충류선립체기인조대소위15~32 kb。평균 A+ T =62.9%。다수충류기인분포재중련상,이방목적기인분포재2조련상;소수충류(방목13개、렴합목적2개、이패목적1개、해랑목적1개,거려속적패류)적선립체기인조함유13충단백질기인,기여충류위12충,결소atp8;문합속4개충류、거려속중4개충류、방목적11개충류、이패속중적자이패화지중해이패적PCGs、rRNA기인배서재동속내혹과내상동;진주패목모려과적10개충류선립체기인조가분위7충류형;선패과해만선패2개선립체기인조기인결구상사외,기여충류무공향기인괴;이패과적자이패화해만이패기인결구겁상사。록이패적결구독특,co x 2위쌍고패;해랑목적북방찬암합기인결구여기타목적상사성겁저。다수쌍각류선립체기인조비편마구점7.64%~40.26%,주비편마구대소위374~4341 nt。기우12충PCGs핵감산/안기산적속내충간최소분기도분별위0.2~1.0/0~1.0(문합속)、0.4~2.0/0~3.2(이패속)화1.9~13.9/0~6.4(거려속)。
Bivalves mitochondrial genomes (mtDNA ) were retrieved from GenBank , and then the comparative analysis of the genomic structures were conducted to reveal the evolution of mitochondrial genomes in bivalves ,and the application of mitochondrial genome in the evolution and identification of related species. A total of 45 mtDNA sequences obtained ,ranging from 15 to 32 kb ,with average A+T content of 62. 9% ,were distributed in 5 orders in bivalves. Genes of most species were found to be distributed in the heavy chain ,and mitochondrial genes from Unionoida in the 2 chains. A few species (12 species from Unionoida ,2 species from Veneroida ,1 species from Mytiloida ,and 1 species from Myoida , species from oyster Crassostrea) mitochondrial genomes contain 13 protein-coding genes (PCGs) ,and the remainings are comprised of 12 PCGs ,w hich are lack of AT P8 gene. The gene arrangements of PCGs and rRNAs are identical within same genus or family ,including 4 species from Meretrix ,4 species from Crassostrea ,11 species from Unionidae and Margaritiferidae , two species (Mytilus edulis and M. galloprovincialis) from mussel Mytilus. The gene arrangements of 10 mitochondrial genomes from Ostreidae can be divided into 7 types. There were no shared gene blocks in mitochondrial genomes from Pectinidae except similar gene structures were detected in bay scallop Argopecten irradians irradians f arreri(NC_012977)and A. irradians(NC_009687). The mussels Mytilus edulis and M. trossulus from Mytilidae have very similar genomic structures ,and the genomic structure of Musculista senhousia is very special with a duplicated cox2 genes. The gene arrangement of Hiatella arctica from Myoida is very different from other species. The proportions of non-coding regions in mitogenomes are ranged from 7.6%to 40.3% ,the major non-coding region ranging from 374nt to 4341nt in size in bivalves. The minimum divergence is found to be 0.2-1.0/0-1.0 in Meretrix ,0.4-2.0/0-3.2 in Mytilus and 1.9-13.9/0-6.4 in oyster Crassostrea based on nucleotides of PCGs genes/amino acids of proteins.