计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2013年
12期
190-193
,共4页
遗传规划%多样化排序%多特征图像%排序函数%图像检索
遺傳規劃%多樣化排序%多特徵圖像%排序函數%圖像檢索
유전규화%다양화배서%다특정도상%배서함수%도상검색
Genetic programming%Ranking with diversity%Multi-feature images%Ranking function%Image retrieval
提出一种多特征图像的排序算法,通过遗传规划算法对多特征图像排序问题进行建模。利用排序树将候选排序函数表示为遗传规划种群中的个体,把遗传规划算法中的个体由图像特征、常数以及算数运算符组成的三元组构成。随机选择一组初始排序函数作为遗传规划算法的个体,并将其表示成排序树。在每次迭代过程中,计算每棵排序树的适应度,并记录适应度高的排序树,通过变异、交叉以及繁殖操作生成新的个体。交叉操作可以提高种群的多样性,从而实现图像的多样化排序。接下来,从记录过的排序树中,选择对图像训练集排序准确性最高的排序树作为图像排序函数。实验结果表明,所提出的算法能够有效地对图像的多种特征进行融合,在兼顾多样性的同时显著提高了图像排序结果的准确性。
提齣一種多特徵圖像的排序算法,通過遺傳規劃算法對多特徵圖像排序問題進行建模。利用排序樹將候選排序函數錶示為遺傳規劃種群中的箇體,把遺傳規劃算法中的箇體由圖像特徵、常數以及算數運算符組成的三元組構成。隨機選擇一組初始排序函數作為遺傳規劃算法的箇體,併將其錶示成排序樹。在每次迭代過程中,計算每棵排序樹的適應度,併記錄適應度高的排序樹,通過變異、交扠以及繁殖操作生成新的箇體。交扠操作可以提高種群的多樣性,從而實現圖像的多樣化排序。接下來,從記錄過的排序樹中,選擇對圖像訓練集排序準確性最高的排序樹作為圖像排序函數。實驗結果錶明,所提齣的算法能夠有效地對圖像的多種特徵進行融閤,在兼顧多樣性的同時顯著提高瞭圖像排序結果的準確性。
제출일충다특정도상적배서산법,통과유전규화산법대다특정도상배서문제진행건모。이용배서수장후선배서함수표시위유전규화충군중적개체,파유전규화산법중적개체유도상특정、상수이급산수운산부조성적삼원조구성。수궤선택일조초시배서함수작위유전규화산법적개체,병장기표시성배서수。재매차질대과정중,계산매과배서수적괄응도,병기록괄응도고적배서수,통과변이、교차이급번식조작생성신적개체。교차조작가이제고충군적다양성,종이실현도상적다양화배서。접하래,종기록과적배서수중,선택대도상훈련집배서준학성최고적배서수작위도상배서함수。실험결과표명,소제출적산법능구유효지대도상적다충특정진행융합,재겸고다양성적동시현저제고료도상배서결과적준학성。
In this paper we propose a multi-feature images ranking algorithm, and model the multi-feature images ranking problem by using genetic programming algorithm.We utilise the ranking trees to represent the candidate ranking functions as the individuals in genetic programming populations, and the individual in genetic programming algorithm of this paper is made up of a triple which contains the image features , constants, and arithmetic operators.A group of initial ranking functions are randomly selected as the individuals in genetic programming algorithm, and then to be organised as ranking trees.In every iteration process, the fitness of each ranking tree is calculated, and then the ranking trees with high fitness value are recorded.Next, new individuals are generated by the mutation, crossover and reproduction operations.Particularly, diversity images ranking can be implemented by the crossover operation which can obviously promote the population diversity .Afterwards, the ranking tree which can rank the images in training dataset with highest accuracy is chosen as the image ranking function.Experimental results show that the proposed algorithm can effectively fuse the multi-features of images, and can significantly improve the accuracy of image ranking results with high diversity.