红外技术
紅外技術
홍외기술
INFRARED TECHNOLOGY
2013年
12期
773-779
,共7页
张笙%李郁峰%严云洋%徐铭蔚%熊平%唐遵烈
張笙%李鬱峰%嚴雲洋%徐銘蔚%熊平%唐遵烈
장생%리욱봉%엄운양%서명위%웅평%당준렬
运动目标检测%视频监控%热红外视频%可见光视频%数据融合
運動目標檢測%視頻鑑控%熱紅外視頻%可見光視頻%數據融閤
운동목표검측%시빈감공%열홍외시빈%가견광시빈%수거융합
moving target detection%video surveillance%thermal video%visible video%data fusion
在非受控环境中,由于背景的动态变化或光照、阴影的影响,执行高效、实时的运动目标检测具有很大的挑战性,联合长波红外(LWIR 8~14μm)和可见光相机构成一个多模视觉系统可以显著提高运动目标检测的鲁棒性和完整性。提出了一种先检测后融合的运动目标检测算法,首先对可见光视频采用混合高斯建模方法检测运动目标,对热红外视频设计了基于背景差分和时间差分相结合的加权算法提取运动区域,然后对可见光与热红外视频中运动目标进行特征级融合。实验结果表明:该方法利用热红外与可见光图像的直观互补特征,在满足实时性要求的同时,可实现运动目标的精确、完整、鲁棒性检测。
在非受控環境中,由于揹景的動態變化或光照、陰影的影響,執行高效、實時的運動目標檢測具有很大的挑戰性,聯閤長波紅外(LWIR 8~14μm)和可見光相機構成一箇多模視覺繫統可以顯著提高運動目標檢測的魯棒性和完整性。提齣瞭一種先檢測後融閤的運動目標檢測算法,首先對可見光視頻採用混閤高斯建模方法檢測運動目標,對熱紅外視頻設計瞭基于揹景差分和時間差分相結閤的加權算法提取運動區域,然後對可見光與熱紅外視頻中運動目標進行特徵級融閤。實驗結果錶明:該方法利用熱紅外與可見光圖像的直觀互補特徵,在滿足實時性要求的同時,可實現運動目標的精確、完整、魯棒性檢測。
재비수공배경중,유우배경적동태변화혹광조、음영적영향,집행고효、실시적운동목표검측구유흔대적도전성,연합장파홍외(LWIR 8~14μm)화가견광상궤구성일개다모시각계통가이현저제고운동목표검측적로봉성화완정성。제출료일충선검측후융합적운동목표검측산법,수선대가견광시빈채용혼합고사건모방법검측운동목표,대열홍외시빈설계료기우배경차분화시간차분상결합적가권산법제취운동구역,연후대가견광여열홍외시빈중운동목표진행특정급융합。실험결과표명:해방법이용열홍외여가견광도상적직관호보특정,재만족실시성요구적동시,가실현운동목표적정학、완정、로봉성검측。
In uncontrolled environments, because of the effect of dynamic background, lighting changes and shadows, it is challenging to perform an efficient and real-time moving target detection algorithm. Constructing a multi-mode visual surveillance system with long wave infrared(LWIR 8-14 μm) and visible cameras can significantly improve the robustness and completeness of moving objects extraction. This paper presents a detection-fusion moving target detection algorithm. It starts from a Gaussian mixture background modeling algorithm for moving objects extraction in visible video and a weighted method based on background subtraction and the time-stepping for moving target detection in thermal video. The moving targets, obtained from visible and thermal video, are then fused at the feature level. The experimental results demonstrate that this method which uses the intuitive and complementary information from thermal and visual imagery can meet the real-time requirements, and can also get more complete, accurate and robust detection.