仲恺农业工程学院学报
仲愷農業工程學院學報
중개농업공정학원학보
JOURNAL OF ZHONGKAI UNIVERSITY OF AGRICULTURE AND TECHNOLOGY
2013年
4期
43-46
,共4页
Newton迭代法%重根%收敛阶
Newton迭代法%重根%收斂階
Newton질대법%중근%수렴계
Newton iterative method%multiple root%convergent order
设方程f( x)=0有λ重根ai ,λ为任意正实数,当0<λ<1时,函数f( x)在ai处不可导,作者给出了求这一类弱条件方程的λ重根的广义Newton迭代法,并证明了这种方法的收敛阶为4.
設方程f( x)=0有λ重根ai ,λ為任意正實數,噹0<λ<1時,函數f( x)在ai處不可導,作者給齣瞭求這一類弱條件方程的λ重根的廣義Newton迭代法,併證明瞭這種方法的收斂階為4.
설방정f( x)=0유λ중근ai ,λ위임의정실수,당0<λ<1시,함수f( x)재ai처불가도,작자급출료구저일류약조건방정적λ중근적엄의Newton질대법,병증명료저충방법적수렴계위4.
Assume equation f( x)=0 had λmultiple roots ai , λcould be any positive real number . When 0<λ<1, f(x) was not derivable where x=ai.A generalized Newton iterative method for λroots of specified kind of weak condition equation was presented , and the convergent order of the method was proved to be 4 .