气象学报(英文版)
氣象學報(英文版)
기상학보(영문판)
ACTA METEOROLOGICA SINICA
2013年
6期
769-787
,共19页
persistent heavy rainfall%western Pacific subtropical high%subseasonal variations of sea surface temperature%South China
This study investigates the relationship between subseasonal variations of the circulation and sea surface temperature (SST) over the South China-East Asian coastal region (EACR) in association with the persistent heavy rainfall (PHR) events over South China during May-August through statistical analysis. Based on the intensity threshold and duration criterion of the daily rainfall, a total of 63 May-June (MJ) and 59 July-August (JA) PHR events are selected over South China from 1979 to 2011. The lower-level circulation anomalies on subseasonal timescale exhibit an anomalous cyclone over South China and an anomalous anticyclone shaped like a tongue over the South China Sea (SCS) during the PHR events for MJ group. The anomalous cyclone over South China in MJ originates from low-value systems in the mid-high latitudes before the rainfall. The anomalous anticyclone over the SCS is due to the westward extension of the western Pacific subtropical high (WPSH) and the southeastward propagation of the anomalous anticyclone from South China before the rainfall. For JA group, the lower-level anomalous circulation pattern is similar to that for MJ over the South China-EACR, but with different features of propagation. The subseasonal anomalous anticyclone is also related to the westward stretch of the WPSH, while the anomalous cyclone is traced back to the weak anomalous cyclone over the Philippine Sea several days before the rainfall events. Positive SST anomaly (SSTA) is observed over the SCS and the Philippine Sea during the MJ PHR events on the subseasonal timescale. It is closely linked with the variation of local anomalous anticyclone. In contrast, negative SSTA occupies the South China coastal region for the JA PHR events, and it is driven by the anomalous cyclone which propagates northwestward from the Philippine Sea. The subseasonal positive (negative) SSTAs are generated via the local processes of above (below)-normal incident solar radiation and below (above)-normal latent heat fluxes. The possible role of the subseasonal SSTA in the local convective instability is also analyzed in this study.