天津农学院学报
天津農學院學報
천진농학원학보
JOURNAL OF TIANJIN AGRICULTURAL COLLEGE
2013年
4期
28-35
,共8页
马国强%马吉飞%郭鹏%宋志恒%于娜
馬國彊%馬吉飛%郭鵬%宋誌恆%于娜
마국강%마길비%곽붕%송지항%우나
图像分割%K-均值聚类%CT图像
圖像分割%K-均值聚類%CT圖像
도상분할%K-균치취류%CT도상
image segmentation%K-means clustering%computer tomography image
为提高K-均值聚类算法在医学CT图像分割上的应用效果、稳定性和质量,减少程序运行时间,本研究用Matlab语言优化了K-均值聚类算法程序,与Statistics Toolbox的K-means函数进行比较,使用单因素方差分析法检验两种算法实现程序运行时间的差异,并直接观察分割效果和稳定性。结果显示,改进后的K-均值聚类算法程序具有分割结果稳定、质量提高等优点,在常用Windows操作系统和PC机配置环境下,分割耗时在1 s左右,显著低于原有的分割程序,消除了等待感觉,提高了使用者的工作舒适度和效率,为图像的识别处理奠定了基础。
為提高K-均值聚類算法在醫學CT圖像分割上的應用效果、穩定性和質量,減少程序運行時間,本研究用Matlab語言優化瞭K-均值聚類算法程序,與Statistics Toolbox的K-means函數進行比較,使用單因素方差分析法檢驗兩種算法實現程序運行時間的差異,併直接觀察分割效果和穩定性。結果顯示,改進後的K-均值聚類算法程序具有分割結果穩定、質量提高等優點,在常用Windows操作繫統和PC機配置環境下,分割耗時在1 s左右,顯著低于原有的分割程序,消除瞭等待感覺,提高瞭使用者的工作舒適度和效率,為圖像的識彆處理奠定瞭基礎。
위제고K-균치취류산법재의학CT도상분할상적응용효과、은정성화질량,감소정서운행시간,본연구용Matlab어언우화료K-균치취류산법정서,여Statistics Toolbox적K-means함수진행비교,사용단인소방차분석법검험량충산법실현정서운행시간적차이,병직접관찰분할효과화은정성。결과현시,개진후적K-균치취류산법정서구유분할결과은정、질량제고등우점,재상용Windows조작계통화PC궤배치배경하,분할모시재1 s좌우,현저저우원유적분할정서,소제료등대감각,제고료사용자적공작서괄도화효솔,위도상적식별처리전정료기출。
In order to improve the application effect, stability and quality of K-means clustering algorithm in medical CT image segmentation and reduce the running time of the program, K-clustering algorithm program was optimized with Matlab language in this study, and the CT image segmentation experiments were also done on the original medical CT images data set with the optimized K-clustering algorithm program and the K-means function of the MATLAB R2012a Statistics Toolbox. It is analyzed the running time differences of the two kinds of program with single factor variance analysis method, and the stability and quality of the images segmentation results were observed. The results show that the improved K-means clustering algorithm programming had higher stability and quality of segmentation results, etc. Under the environment of ordinary Windows operation system and hardware of personal computer configuration, the segmenting time was about one second, significantly lower than that of the original segmentation procedures, thus the feeling of waiting was eliminated, the user’s comfort and efficiency were improved, and the foundation was laid for the recognition processing of the image.