红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2013年
12期
3502-3508
,共7页
徐景中%寇媛%袁芳%张伟
徐景中%寇媛%袁芳%張偉
서경중%구원%원방%장위
自动配准%航空影像%机载LiDAR%结构特征
自動配準%航空影像%機載LiDAR%結構特徵
자동배준%항공영상%궤재LiDAR%결구특정
auto-registration%aerial imagery%airborne LiDAR%structure feature
针对现有机载LiDAR数据与航空影像配准方法对匹配特征具有较强的依赖性,易受数据等影响的问题,提出了一种基于结构特征的自动配准方法。该方法首先提取LiDAR距离图像与对应影像的结构特征,利用初始姿态参数将LiDAR结构特征投影至影像坐标系下,根据结构特征的几何约束条件获取初始匹配点集,完成粗匹配;接着利用粗匹配结果计算直接变换模型(DLT)参数,并以此为初值引入双点几何约束,采用循环迭代的匹配策略,不断剔除错误匹配,获得一组新的匹配点集,完成精匹配;最后根据精匹配结果,采用基于单位四元数的空间后方交会方法解算航空影像的姿态参数,实现机载LiDAR数据与航空影像的自动配准。实验证明,该方法受噪声影响小,能实现机载LiDAR数据与航空影像的自动配准。
針對現有機載LiDAR數據與航空影像配準方法對匹配特徵具有較彊的依賴性,易受數據等影響的問題,提齣瞭一種基于結構特徵的自動配準方法。該方法首先提取LiDAR距離圖像與對應影像的結構特徵,利用初始姿態參數將LiDAR結構特徵投影至影像坐標繫下,根據結構特徵的幾何約束條件穫取初始匹配點集,完成粗匹配;接著利用粗匹配結果計算直接變換模型(DLT)參數,併以此為初值引入雙點幾何約束,採用循環迭代的匹配策略,不斷剔除錯誤匹配,穫得一組新的匹配點集,完成精匹配;最後根據精匹配結果,採用基于單位四元數的空間後方交會方法解算航空影像的姿態參數,實現機載LiDAR數據與航空影像的自動配準。實驗證明,該方法受譟聲影響小,能實現機載LiDAR數據與航空影像的自動配準。
침대현유궤재LiDAR수거여항공영상배준방법대필배특정구유교강적의뢰성,역수수거등영향적문제,제출료일충기우결구특정적자동배준방법。해방법수선제취LiDAR거리도상여대응영상적결구특정,이용초시자태삼수장LiDAR결구특정투영지영상좌표계하,근거결구특정적궤하약속조건획취초시필배점집,완성조필배;접착이용조필배결과계산직접변환모형(DLT)삼수,병이차위초치인입쌍점궤하약속,채용순배질대적필배책략,불단척제착오필배,획득일조신적필배점집,완성정필배;최후근거정필배결과,채용기우단위사원수적공간후방교회방법해산항공영상적자태삼수,실현궤재LiDAR수거여항공영상적자동배준。실험증명,해방법수조성영향소,능실현궤재LiDAR수거여항공영상적자동배준。
Current algorithms of registration of aerial imagery with airborne LiDAR data has the major issue of str ong dependency upon the matching feature, so these methods are impressionable to the texture feature of image and the density of LiDAR point cloud. A new method of auto-registration of aerial imagery with airborne LiDAR data based on structure feature was proposed. The first step was the automated extraction of structure feature from LiDAR range image and aerial imagery. After that the LiDAR structure features were projected onto aerial imagery and corresponding features were determined using geometry constraints. The second step was the wrong matches eliminating by two points geometric constraint after calculating the DLT parameters as the initial value, and iteration strategy was adopted to obtain optimal results. The last step was the pose parameters calculated by the optimal matching results using quaternion-based solution of space resection. Experimental studies have demonstrated that this algorithm is effective in auto-registration of aerial imagery with airborne LiDAR data and little influenced by noise.