红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2013年
12期
3458-3463
,共6页
输电线路结构%人造设施识别%人造设施缺陷诊断%感知组织
輸電線路結構%人造設施識彆%人造設施缺陷診斷%感知組織
수전선로결구%인조설시식별%인조설시결함진단%감지조직
structure of transmission line%recognition of artificial facilities%fault diagnosis of artificial facilities%perceptual organization
为了提高输电线路缺陷诊断正确率,有效降低各种复杂背景纹理及光线对识别输电线路结构的影响,从Gestalt感知理论着手,研究一种多感知识别输电线路结构的方法。在图像识别的底层,提取不同方向、不同宽度的线段,研究了一种融合计算Gestalt定律的近似性、连续性、共线性的多级搜索算法,获得显著的、完整的输电线路人造对象轮廓;在图像识别的中层,研究一种基于分块与合并的计算方法能视觉感知近平行线、近对称交叉的结构,设计了一个三级分类器感知聚类平行线组;在图像识别的高层,研究输电线路的知识模型,建立识别输电线路组成结构的约束机制,进而从语义上唯一地识别输电线路的结构。通过无人机巡检采集的输电线路图像,验证这种方法能有效识别输电线路组成的杆塔、导线、地线及绝缘子所在区域。
為瞭提高輸電線路缺陷診斷正確率,有效降低各種複雜揹景紋理及光線對識彆輸電線路結構的影響,從Gestalt感知理論著手,研究一種多感知識彆輸電線路結構的方法。在圖像識彆的底層,提取不同方嚮、不同寬度的線段,研究瞭一種融閤計算Gestalt定律的近似性、連續性、共線性的多級搜索算法,穫得顯著的、完整的輸電線路人造對象輪廓;在圖像識彆的中層,研究一種基于分塊與閤併的計算方法能視覺感知近平行線、近對稱交扠的結構,設計瞭一箇三級分類器感知聚類平行線組;在圖像識彆的高層,研究輸電線路的知識模型,建立識彆輸電線路組成結構的約束機製,進而從語義上唯一地識彆輸電線路的結構。通過無人機巡檢採集的輸電線路圖像,驗證這種方法能有效識彆輸電線路組成的桿塔、導線、地線及絕緣子所在區域。
위료제고수전선로결함진단정학솔,유효강저각충복잡배경문리급광선대식별수전선로결구적영향,종Gestalt감지이론착수,연구일충다감지식별수전선로결구적방법。재도상식별적저층,제취불동방향、불동관도적선단,연구료일충융합계산Gestalt정률적근사성、련속성、공선성적다급수색산법,획득현저적、완정적수전선로인조대상륜곽;재도상식별적중층,연구일충기우분괴여합병적계산방법능시각감지근평행선、근대칭교차적결구,설계료일개삼급분류기감지취류평행선조;재도상식별적고층,연구수전선로적지식모형,건립식별수전선로조성결구적약속궤제,진이종어의상유일지식별수전선로적결구。통과무인궤순검채집적수전선로도상,험증저충방법능유효식별수전선로조성적간탑、도선、지선급절연자소재구역。
In order to improve the diagnosis accuracy of the transmission line defect, and reduce the influence on identifying the structure of the transmission line made by complicated background texture and light. Starting from Gestalt perception theory, a multiple perceptual identification method was developed to identify transmission line structure. Firstly, line with different directions and different width was extracted and sorted. Through a kind of multilevel searching algorithm with similarity, continuity and colinearity of Gestalt Law, the contour of transmission line was obtained accurately and completely. Secondly, a method based on block partition was developed, which can visually perceive near parallel lines and near symmetrical cross structure. A three level classifier for clustered parallel line group was designed. Lastly, combined with prior knowledge of the transmission line model, constraint mechanism was built to recognize the structure of transmission lines, and then uniquely identify the semantically structure of transmission lines. Experimental results show that the method can effectively identify the transmission line consisting of the tower, conductor, earth wire and the insulator region through recognition of the UAV inspection acquisition transmission line image.