红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2013年
12期
3325-3329
,共5页
杨国洪%李军%韦敏习%侯立飞%易涛%刘慎业
楊國洪%李軍%韋敏習%侯立飛%易濤%劉慎業
양국홍%리군%위민습%후립비%역도%류신업
高阶衍射%X射线分光晶体%标定%X射线衍射仪
高階衍射%X射線分光晶體%標定%X射線衍射儀
고계연사%X사선분광정체%표정%X사선연사의
high order diffraction%X-ray crystal%calibration%X-ray diffractometer
包含高阶衍射的X射线分光晶体积分衍射效率是X射线光谱准确辨识、X射线分光晶体性能研究、X射线光谱定量测量和高分辨X射线单能成像的基础。基于X射线衍射仪,选择适当厚度的镍滤片和控制X射线管电压,极大地抑制Cu Kβ及韧致辐射,将X射线管光源Cu Kα单能化。以常用的X射线分光晶体季戊四醇[PET(002)]为样品,对X射线分光晶体的高阶积分衍射效率进行标定其结果表明,在Cu Kα能点,PET(002)晶体的积分衍射效率,二阶为一阶的14.36%,三阶为一阶的4.07%;Cu Kα1最大峰值比,二阶衍射为一阶的7.7%,三阶衍射为一阶的1.3%。基于X射线衍射仪的X射线分光晶体高阶衍射效率实验标定具有快速高效、方便灵活的特点。
包含高階衍射的X射線分光晶體積分衍射效率是X射線光譜準確辨識、X射線分光晶體性能研究、X射線光譜定量測量和高分辨X射線單能成像的基礎。基于X射線衍射儀,選擇適噹厚度的鎳濾片和控製X射線管電壓,極大地抑製Cu Kβ及韌緻輻射,將X射線管光源Cu Kα單能化。以常用的X射線分光晶體季戊四醇[PET(002)]為樣品,對X射線分光晶體的高階積分衍射效率進行標定其結果錶明,在Cu Kα能點,PET(002)晶體的積分衍射效率,二階為一階的14.36%,三階為一階的4.07%;Cu Kα1最大峰值比,二階衍射為一階的7.7%,三階衍射為一階的1.3%。基于X射線衍射儀的X射線分光晶體高階衍射效率實驗標定具有快速高效、方便靈活的特點。
포함고계연사적X사선분광정체적분연사효솔시X사선광보준학변식、X사선분광정체성능연구、X사선광보정량측량화고분변X사선단능성상적기출。기우X사선연사의,선택괄당후도적얼려편화공제X사선관전압,겁대지억제Cu Kβ급인치복사,장X사선관광원Cu Kα단능화。이상용적X사선분광정체계무사순[PET(002)]위양품,대X사선분광정체적고계적분연사효솔진행표정기결과표명,재Cu Kα능점,PET(002)정체적적분연사효솔,이계위일계적14.36%,삼계위일계적4.07%;Cu Kα1최대봉치비,이계연사위일계적7.7%,삼계연사위일계적1.3%。기우X사선연사의적X사선분광정체고계연사효솔실험표정구유쾌속고효、방편령활적특점。
Integral diffraction coefficient including high diffraction order is the basis of identification of X-ray line, study of X-ray crystal characteristy, X-ray line intensity quantitative measurement and X-ray monochromatic image diagnosis. On the automatic X-ray diffractometer (XRD), based on the stability and precision control of ?!and 2?!goniometer, special plane crystal holder was made. Bremsstrahlung and Cu Kβine were attenuated for 5 orders by 40 μ-thick pure Nickel filter in 15 kV and 20 mA supply to X-ray Cu tube, X-ray source of Cu taget is to be Cu K monochromatic source, transmission coefficient of Nickel filter is the criterion of Cu K? monochromatic source. For X-ray Pentaerythritol (002) crystal, integral diffraction coefficient of 1-3 order diffraction on Cu Kanergy were calibrated. The results show that integral diffraction coefficient of the 2nd order and the 3rd order is only 14.36% and 4.07%, the Cu K?1 intensity ratio of the 2nd order and the 3rd order is only 7.7% and 1.3% compared with the 1st order diffraction. This kind of calibration is efficient and convenient on XRD in common laboratory.