红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2013年
12期
3163-3167
,共5页
孙巧霞%徐向晏%安迎波%曹希斌%刘虎林%田进寿%董改云%郭晖%李燕红
孫巧霞%徐嚮晏%安迎波%曹希斌%劉虎林%田進壽%董改雲%郭暉%李燕紅
손교하%서향안%안영파%조희빈%류호림%전진수%동개운%곽휘%리연홍
红外光电阴极%InP/In0.53Ga0.47As/InP%时间响应特性
紅外光電陰極%InP/In0.53Ga0.47As/InP%時間響應特性
홍외광전음겁%InP/In0.53Ga0.47As/InP%시간향응특성
Infrared photocathode%InP/In0.53Ga0.47As/InP%time response characterisitics
文中理论研究了InP/In0.53Ga0.47As/InP异质结透射式红外光电阴极的时间响应特性,光谱响应范围1.0~1.7μm。在场助偏压的作用下,模拟计算了光激发的电子在阴极内部的传输特性。模拟计算表明,光电阴极的响应速度随场助偏压的增大而加快;随光吸收层厚度的增大而减慢;随光吸收层掺杂浓度的增大,光电阴极的响应速度变慢。发射层厚度及掺杂浓度的增大都会使得阴极的响应时间加长。经过对阴极结构参数和掺杂浓度的优化,得到在吸收层和发射层厚度分别为2μm、0.5μm,掺杂浓度分别为1.5×1015 cm-3、1.0×1016 cm-3时,在适当场助偏压下光电阴极的响应时间可优于100 ps。
文中理論研究瞭InP/In0.53Ga0.47As/InP異質結透射式紅外光電陰極的時間響應特性,光譜響應範圍1.0~1.7μm。在場助偏壓的作用下,模擬計算瞭光激髮的電子在陰極內部的傳輸特性。模擬計算錶明,光電陰極的響應速度隨場助偏壓的增大而加快;隨光吸收層厚度的增大而減慢;隨光吸收層摻雜濃度的增大,光電陰極的響應速度變慢。髮射層厚度及摻雜濃度的增大都會使得陰極的響應時間加長。經過對陰極結構參數和摻雜濃度的優化,得到在吸收層和髮射層厚度分彆為2μm、0.5μm,摻雜濃度分彆為1.5×1015 cm-3、1.0×1016 cm-3時,在適噹場助偏壓下光電陰極的響應時間可優于100 ps。
문중이론연구료InP/In0.53Ga0.47As/InP이질결투사식홍외광전음겁적시간향응특성,광보향응범위1.0~1.7μm。재장조편압적작용하,모의계산료광격발적전자재음겁내부적전수특성。모의계산표명,광전음겁적향응속도수장조편압적증대이가쾌;수광흡수층후도적증대이감만;수광흡수층참잡농도적증대,광전음겁적향응속도변만。발사층후도급참잡농도적증대도회사득음겁적향응시간가장。경과대음겁결구삼수화참잡농도적우화,득도재흡수층화발사층후도분별위2μm、0.5μm,참잡농도분별위1.5×1015 cm-3、1.0×1016 cm-3시,재괄당장조편압하광전음겁적향응시간가우우100 ps。
The time response characterisitics of InP/In0.53Ga0.47As/InP heterojunction infrared photocathode was studyed in this paper, such photocathode worked at transmission mode with a wide spectral response range from 1.0-1.7 μm. Under certain field-assisted bias voltage, the transmission characteristics of photo-excited electrons inside the phococathode were simulated. The results show that the response speed of the photocathode are accelerated with the increasing of the field-assisted bias voltage. While P-InGaAs photo-absorbing layer is thickened, the response speed gets slow. The response speed also gets slow when increasing the doping concentration of InGaAs photo-absorbing layer. When increasing the thickness and doping concentration of P-InP photoelectron-emitting layer, the respose time will be prolonged. Based on all these conclusions, the structure parameters and doping concentration of each layer were optimized. The optimization results show that when the thickness of the photo-absorbing layer and the photoelectron-emitting layer are about 2μm and 0.5μm respectively, and the doping concentration of photo-absorbing layer and photoelectron-emitting layer are about 1.5 ×1015 cm-3 and 1.0 ×1016 cm-3 respectively, the response time of photocathode can be reduced to less than 100 ps.