计算机科学与探索
計算機科學與探索
계산궤과학여탐색
JOURNAL OF FRONTIERS OF COMPUTER SCIENCE & TECHNOLOGY
2014年
1期
90-102
,共13页
遗传算法%粒子群优化算法%单峰%多峰%性能对比
遺傳算法%粒子群優化算法%單峰%多峰%性能對比
유전산법%입자군우화산법%단봉%다봉%성능대비
genetic algorithm%particle swarm optimization%unimodal%multimodal%performance comparison
遗传算法与粒子群优化算法作为经典的进化计算方法已经被广泛地应用于函数优化、生产调度、机器学习和数据挖掘等领域。对这两种经典算法在求解不同问题时的性能进行了系统的对比和分析,比较了两种算法在求解单峰和多峰问题上的性能差异。进一步对算法的健壮性进行了测试,分析了算法运行过程中参数对算法性能的影响。最终总结出两种算法的性能特点,并讨论了算法的改进策略,旨在为工程应用中的算法选择提供技术参考。
遺傳算法與粒子群優化算法作為經典的進化計算方法已經被廣汎地應用于函數優化、生產調度、機器學習和數據挖掘等領域。對這兩種經典算法在求解不同問題時的性能進行瞭繫統的對比和分析,比較瞭兩種算法在求解單峰和多峰問題上的性能差異。進一步對算法的健壯性進行瞭測試,分析瞭算法運行過程中參數對算法性能的影響。最終總結齣兩種算法的性能特點,併討論瞭算法的改進策略,旨在為工程應用中的算法選擇提供技術參攷。
유전산법여입자군우화산법작위경전적진화계산방법이경피엄범지응용우함수우화、생산조도、궤기학습화수거알굴등영역。대저량충경전산법재구해불동문제시적성능진행료계통적대비화분석,비교료량충산법재구해단봉화다봉문제상적성능차이。진일보대산법적건장성진행료측시,분석료산법운행과정중삼수대산법성능적영향。최종총결출량충산법적성능특점,병토론료산법적개진책략,지재위공정응용중적산법선택제공기술삼고。
Genetic algorithm (GA) and particle swarm optimization (PSO) have been broadly used in many fields, such as function optimization, production scheduling, machine learning and data mining, etc. This paper makes com-prehensive and systematic comparisons of GA and PSO on dealing with a series of benchmark problems, analyzes their performance on solving unimodal and multimodal functions, and further tests the robustness of two algorithms for investigating the influences of parameters to the performance of the algorithms. This paper finally concludes the characteristics of the two algorithms and discusses their improvement strategies. The goal of this paper is to provide technical guidance for the selection of algorithms in engineering applications.